CovSelHigh: Model-Free Covariate Selection in High Dimensions

Model-free selection of covariates in high dimensions under unconfoundedness for situations where the parameter of interest is an average causal effect. This package is based on model-free backward elimination algorithms proposed in de Luna, Waernbaum and Richardson (2011) <doi:10.1093/biomet/asr041> and VanderWeele and Shpitser (2011) <doi:10.1111/j.1541-0420.2011.01619.x>. Confounder selection can be performed via either Markov/Bayesian networks, random forests or LASSO.

Version: 1.1.1
Depends: R (≥ 2.14.0)
Imports: bnlearn, MASS, bindata, Matching, doRNG, glmnet, randomForest, foreach, xtable, doParallel, bartMachine, tmle
Published: 2017-07-03
Author: Jenny Häggström
Maintainer: Jenny Häggström <jenny.haggstrom at>
License: GPL-3
NeedsCompilation: no
CRAN checks: CovSelHigh results


Reference manual: CovSelHigh.pdf
Package source: CovSelHigh_1.1.1.tar.gz
Windows binaries: r-devel:, r-devel-gcc8:, r-release:, r-oldrel:
OS X binaries: r-release: CovSelHigh_1.1.1.tgz, r-oldrel: CovSelHigh_1.1.1.tgz
Old sources: CovSelHigh archive


Please use the canonical form to link to this page.