Execute Latent Class Analysis (LCA) by using Generalized Structured Component Analysis (GSCA). This is explained in Ryoo, Park, and Kim (2009) <doi:10.1007/s41237-019-00084-6>. It estimates the parameters of latent class prevalence and item response probability in LCA with a single line comment. It also provide graphs of item response probabilities.
Version: | 0.0.2 |
Depends: | R (≥ 2.10) |
Imports: | gridExtra, ggplot2, stringr, progress, psych, fastDummies, fclust, MASS, devtools, foreach, doSNOW |
Suggests: | knitr, rmarkdown, R.rsp |
Published: | 2019-10-09 |
Author: | Jihoon Ryoo [aut], Seohee Park [aut, cre], Seoungeun Kim [aut], heungsun Hwaung [aut] |
Maintainer: | Seohee Park <hee6904 at gmail.com> |
License: | GPL-3 |
URL: | https://github.com/hee6904/gscaLCA |
NeedsCompilation: | no |
Materials: | README |
CRAN checks: | gscaLCA results |
Reference manual: | gscaLCA.pdf |
Package source: | gscaLCA_0.0.2.tar.gz |
Windows binaries: | r-devel: gscaLCA_0.0.2.zip, r-devel-gcc8: gscaLCA_0.0.2.zip, r-release: gscaLCA_0.0.2.zip, r-oldrel: gscaLCA_0.0.2.zip |
OS X binaries: | r-release: gscaLCA_0.0.2.tgz, r-oldrel: gscaLCA_0.0.2.tgz |
Please use the canonical form https://CRAN.R-project.org/package=gscaLCA to link to this page.