metagam: Meta-Analysis of Generalized Additive Models

Meta-analysis of generalized additive models and generalized additive mixed models. A typical use case is when data cannot be shared across locations, and an overall meta-analytic fit is sought. 'metagam' provides functionality for removing individual participant data from models computed using the 'mgcv' and 'gamm4' packages such that the model objects can be shared without exposing individual data. Furthermore, methods for meta-analysing these fits are provided. The implemented methods are described in Sorensen et al. (2020), <arXiv:2002.02627>, extending previous works by Schwartz and Zanobetti (2000) <> and Crippa et al. (2018) <doi:10.6000/1929-6029.2018.07.02.1>.

Version: 0.1.0
Imports: dplyr, furrr, ggplot2, knitr, metafor, metap, purrr, rlang, stringr, tibble, tidyr, viridis
Suggests: future, mgcv, gamm4, gratia, roxygen2, rmarkdown, devtools, covr, testthat (≥ 2.1.0)
Published: 2020-02-20
Author: Oystein Sorensen ORCID iD [aut, cre], Andreas M. Brandmaier ORCID iD [aut], Athanasia Mo Mowinckel ORCID iD [aut]
Maintainer: Oystein Sorensen <oystein.sorensen at>
License: GPL-3
NeedsCompilation: no
Materials: README
In views: MetaAnalysis
CRAN checks: metagam results


Reference manual: metagam.pdf
Vignettes: Dominance
Heterogeneity Plots
Multivariate Smooth Terms
Package source: metagam_0.1.0.tar.gz
Windows binaries: r-devel:, r-devel-gcc8:, r-release:, r-oldrel:
OS X binaries: r-release: metagam_0.1.0.tgz, r-oldrel: metagam_0.1.0.tgz


Please use the canonical form to link to this page.