
Package ‘svUnit’
February 20, 2015

Type Package

Version 0.7-12

Date 2014-03-02

Title SciViews GUI API - Unit testing

Author Philippe Grosjean [aut, cre]

Maintainer Philippe Grosjean <phgrosjean@sciviews.org>

Depends R (>= 1.9.0)

Suggests svGUI, datasets, utils, XML

Description A complete unit test system and functions to implement its GUI part

License GPL-2

URL http://www.sciviews.org/SciViews-R

BugReports https://r-forge.r-project.org/tracker/?group_id=194

NeedsCompilation no

Repository CRAN

Date/Publication 2014-03-02 12:40:56

R topics documented:
svUnit-package . 2
check . 4
guiTestReport . 6
koUnit . 7
Log . 9
svSuite . 10
svSuiteData . 14
svTest . 17
svTestData . 20
unitTests.svUnit . 22

Index 23

1

http://www.sciviews.org/SciViews-R
https://r-forge.r-project.org/tracker/?group_id=194

2 svUnit-package

svUnit-package A framework for test cases, test units and test suites in R

Description

The SciViews svUnit package defines a framework for testing R code, not unlike jUnit for Java. It
is inspired on the checkxxx() functions from the RUnit package and the same test unit files should
be compatible with both svUnit and RUnit. However, the internal implementation is completely
different and svUnit can also be used interactively, while RUnit is only designed to run test units
written in files on disks.

Details

Package: svUnit
Type: Package
Version: 0.7-12
Date: 2014-03-02
License: GPL 2 or above, at your convenience

The test unit framework provided in svUnit is based on tests, also called assertions, implemented in
checkxxx() functions. For instance, the checkTrue(expr) function check if its ’expr’ argument
returns TRUE. Results of these assertions are collected in a centralized logger located in the .Log
object in .GlobalEnv. This is a ’svSuiteData’ object with data about the context of the tests (see for
instance, lastTest(), lastSuite() or metadata(.Log)).

Assertions can give three results: (1) TRUE if success, (2) FALSE in case of failure (in our example,
’expr’ in checkTrue(expr) did not return TRUE), and (3) NA if the code in ’expr’ cannot be parsed
or executed correctly. All these errors or failures are catch and recorded in the logger, as individual
’svTestData’ objects.

Both the logger (’svSuiteData’ object) and test records inside it (’svTestData’ objects) have conve-
nient methods to visualize information they contain: print(), summary() and stats() methods.
Access to the individual test records in the logger is done with list-like instructions: .Log$mytest
returns the ’svTestData’ object named ’mytest’, itself the result of running test in the ’mytest’ test
function (i.e., runTest(mytest), see hereunder). Assertions run at the command line, outside of
specific contexts provided by test functions, test units and test suites (see hereunder) are recorded
under the ’eval’ ’svTestData’ object in the logger (i.e., .Log$eval).

Since a ’svSuiteData’ object (the logger) is also an environment, you can get the list of all test
records it contains using ls(.Log), and you can eliminate a given test record using something like:
rm(mytest, envir = .Log).

Test cases are collections of assertions with the satellite code needed to build example or situations
to be tested. They are collected together in argument-less functions with class being ’svTest’. See
?svTest for further explanations and a couple of example test cases/test functions.

In its simplest instance, a test function is defined as a separate R object loaded in memory (unlike
RUnit where all test must be defined in files). You run it simply by using runTest(mytest). A

svUnit-package 3

slightly more structured way to work is to attach the test function to the object it testes. You use
test(myobj) <- testmyobj to do so, and retrieve it with test(myobj). Now, the test function
always follows the tested object. Testing the object is still simple by using runTest(myobj), which
is totally equivalent to runTest(test(myobj)). One can determine if an object has a test function
associated, or is a test function itself by using is.test(myobj).

Several test functions can be collected together in so-called test units. A test unit only exists on disk.
It is a file named ’runit*.R’ containing sourceable R code with test functions having names starting
with ’test’ (unlike RUnit, the default convention of file names starting with ’runit’ and test function
names starting with ’test’ is not customizable in svUnit). One can also define special .setUp() and
.tearDown() functions in the unit. The first function will be run before each test function, and the
latter one will be run after it. Test units are created manually, or from a collection of objects with
associated test functions loaded in an environment (usually .GlobalEnv) thanks to the makeUnit()
method. These units should be mutually compatible with those used in the RUnit package (at least
this is verified with version 0.4-17 of RUnit).

Test units defined for packages should be located in the package /runitTests subdirectory (/inst/runitTests
for source of the package) or one of its subdirectories. That way, they are located automatically by
the function svSuiteList() that also automatically detects all objects with associated test func-
tions loaded in .GlobalEnv. Test suites are ’svSuite’ objects with a list of test units or test objects
to collect in the suite. Thus, svSuiteList() automatically builds such a suite with all tests it finds
in R, with many possibilities to filter packages’ test units, objects’ test functions, or to add non
standard directories with test units, for instance. See ?svSuite for more details on creating and
using these suites.

A GUI (Graphical User Interface) is provided to automatically build and run tests suites and to get a
graphical (tree) interactive report of the results in the Komodo Edit or IDE code editor, together with
the SciViews-K extension. If you want to use this (optional) GUI, visit http://www.sciviews/org/SciViews-
K to install required software components on your machine.

Finally, the svUnit framework is compatible with R CMD check (see the manual "Writing R exten-
sions"). You simply define man pages (.Rd files) with an example section running selected test units
from your package. The function errorLog() is designed to generate and error if one or more tests
failed or raised an error during R CMD check, and it should be used at the end of the example that
runs your unit test(s). That way, R CMD check is interrupted and a detailed report of the tests that
failed or raised an error is printed. See an example in ?unitTests.svUnit.

Author(s)

Written by Ph. Grosjean, inspired from the general design of the ’RUnit’ package by Thomas
Konig, Klaus Junemann & Matthias Burger.

Maintainer: Ph. Grosjean <phgrosjean@sciviews.org>

References

There is a huge litterature and unit testing. An easy starting point is: http://en.wikipedia.org/wiki/Unit_test.

See Also

RUnit

4 check

Examples

Clear the logger
clearLog()

Design and attach a simple test function to an object
foo <- function(x, y = 2) return(x * y)
testfoo <- function () {

#DEACTIVATED() # Use this to deactive the test (notice placed in the log)
checkEqualsNumeric(5, foo(2),"Check return of foo()")

checkException(foo("b"),"Wrong first argument")
checkException(foo(2, "a"),"Wrong second argument")

}
Attach this to the foo function
test(foo) <- testfoo

Run this test
runTest(foo)

Inspect the result
ls(.Log)
.Log$`test(foo)`
This test fails. You see that the test function requires that foo(2) = 5 and
the actual implementation returns 4. This is a trivial, useless example, but
you are supposed to correct the function. For instance:
foo <- function(x, y = 2) return(x * y + 1)
test(foo) <- testfoo

(runTest(foo)) # Now, that's fine!

check SciViews R Unit assertions (check functions)

Description

These functions define the assertions in test functions. They are designed to check the result of
some test calculation.

Usage

checkEquals(target, current, msg = "", tolerance = .Machine$double.eps^0.5,
checkNames = TRUE, ...)

checkEqualsNumeric(target, current, msg = "",
tolerance = .Machine$double.eps^0.5, ...)
checkIdentical(target, current, msg = "")
checkTrue(expr, msg = "")
checkException(expr, msg = "", silent = getOption("svUnit.silentException"))
DEACTIVATED(msg = "")

check 5

Arguments

current an object created for comparison (not an S4 class object).

target a target object as reference for comparison.

msg an optional (short!) message to document a test. This message is stored in the
log and printed in front of each test report.

tolerance numeric >= 0. A numeric check does not fail if differences are smaller than
‘tolerance’.

checkNames flag, if FALSE the names attributes are set to NULL for both current and target
before performing the check.

expr syntactically valid R expression which can be evaluated and must return a log-
ical vector (TRUE|FALSE). A named expression is also allowed but the name is
disregarded. In checkException(), expr is supposed to generate an error to
pass the test.

silent flag passed on to try, which determines if the error message generated by the
checked function is displayed at the R console. By default, it is FALSE.

... optional arguments passed to all.equal() or all.equal.numeric().

Details

These check functions are equivalent to various methods of the class junit.framework.Assert of Java
junit framework. They should be code-compatible with functions of same name in ’RUnit’ 0.4.17,
except for checkTrue() that is vectorized here, but accept only a scalar result in ’RUnit’. For scalar
test, the behaviour of the function is the same in both packages.

See svTest() for examples of utilisation of these functions in actual test cases attached to R objects.

See also the note about S4 objects in the checkTrue() online help of the ’RUnit’ package.

Value

TRUE if the test succeeds, FALSE if it fails, possibly with a ’result’ attribute containing more infor-
mation about the problem. This is very different from corresponding functions in ’RUnit’ that stop
with an error in case of test failure. Consequently, current functions do not require the complex
evaluation framework designed in ’RUnit’ for that reason.

Author(s)

Philippe Grosjean <phgrosjean@sciviews.org> has adapted interface in ’RUnit’ by Thomas Konig,
Klaus Junemann & Matthias Burger, recoded it, and ported it to ’svUnit’

See Also

svTest, Log, guiTestReport, checkTrue

6 guiTestReport

Examples

clearLog() # Clear the svUnit log

All these tests are correct
(checkEquals(c("A", "B", "C"), LETTERS[1:3]))
(checkEqualsNumeric(1:10, seq(1, 10)))
(checkIdentical(iris[1:50,], iris[iris$Species == "setosa",]))
(checkTrue(1 < 2))
(checkException(log("a")))
Log() # See what's recorded in the log

... but these ones fail
(checkEquals("A", LETTERS[1:3]))
(checkEqualsNumeric(2:11, seq(1, 10)))
(checkIdentical(iris[1:49,], iris[iris$Species == "setosa",]))
(checkTrue(1 > 2))
(checkException(log(1)))
Log() # See what's recorded in the log

Create a test function and run it
foo <- function(x, y = 2) return(x * y)
test(foo) <- function () {

#DEACTIVATED()
checkEqualsNumeric(5, foo(2))
checkEqualsNumeric(6, foo(2, 3))
checkTrue(is.test(foo))
checkTrue(is.test(test(foo)))
checkIdentical(test(foo), attr(foo, "test"))
checkException(foo("b"))

checkException(foo(2, "a"))
}
(runTest(foo))

Of course, everything is recorded in the log
Log()

clearLog()

guiTestReport Report or give feedback to the GUI client about running test units

Description

These functions are usually not called from the command line. They return data to compatible GUI
clients, like Komodo Edit with the SciViews-K extension.

Usage

guiTestReport(object, sep = "\t", path = NULL, ...)

koUnit 7

guiTestFeedback(object, path = NULL, ...)
guiSuiteList(sep = "\t", path = NULL, compare = TRUE)
guiSuiteAutoList(...)

Arguments

object a svUnitData object.

... not used currently.

sep field separator to use in the results.

path path where to write a ’Suites.txt’ file with the list of currently available test suites
(to be used by the GUI client). If NULL, no file is written (by default).

compare do we compare the list of available test suite and return something to the GUI
client only if there are changes in the list? This is used (when TRUE) to avoid
unnecessary multiple processings of the same list by the GUI client.

Value

guiSuiteList() returns the list of available test suites invisibly. guiSuiteAutoList() is used to
establish a callback to automatically list the available test suites in the GUI. It is not intended to be
called directly by the user. The other functions just return TRUE invisibly. They are used for their
side effect of sending data to compatible GUI clients.

Author(s)

Philippe Grosjean <phgrosjean@sciviews.org>

See Also

svTest, svSuite, koUnit_version

koUnit Interact with the test unit GUI in Komodo/SciViews-K

Description

These functions allow controlling the test unit module (R Unit tab at right) in Komodo with SciViews-
K and SciViews-K Unit extensions (see http://www.sciviews.org/SciViews-K). R must be correctly
connected to Komodo, meaning that the ’svGUI’ package must be loaded with proper configuration
of client/server socket connections between R and Komodo. See the manual about SciViews-K for
more information. The functions defined here are the same as JavaScript functions defined in the
’sv.r.unit’ namespace in Komodo/SciViews-K Unit. For instance, koUnit_runTest() is equivalent
to sv.r.unit.runTest(); in a Javascript macro in Komodo.

8 koUnit

Usage

koUnit_isAutoTest()
koUnit_setAutoTest(state)
koUnit_runTest()
koUnit_showRUnitPane(state)
koUnit_version()

Arguments

state TRUE or FALSE, or missing for koUnit_showRUnitPane(), in this case, the R
Unit pane visibility is toggled.

Value

koUnit_isAutoTest() returns TRUE if the test unit is in auto mode in Komodo (the selected tests
are run automatically each time a .R file edited in Komodo is saved).

koUnit_version() returns the version for which the SciViews-K Unit extension was designed for.
This allow to check if this version is compatible with current ’svUnit’ R package version, and to
propose to update the Komodo extension if needed (this mechanism is not running currently, but
it will be implemented in the future to avoid or limit incompatibilities between respective R and
Komodo extensions).

The other functions are invoked for their side effect and they return nothing. Note, however, that
correct execution of this code in Komodo is verified, and the functions issue an error in R if they
fail to execute correctly in Komodo.

Author(s)

Philippe Grosjean <phgrosjean@sciviews.org>

See Also

guiTestReport

Examples

Not run:
Make sure R is communicating with Komodo before use, see ?koCmd in svGUI
koUnit_version()

Toggle visibility of the R Unit pane in Komodo twice
koUnit_showRUnitPane()
koUnit_showRUnitPane()

Make sure that the R Unit pane is visible
koUnit_showRUnitPane(TRUE)

Is the test unit running in auto mode?
koUnit_isAutoTest()

Toggle auto test mode off

Log 9

koUnit_setAutoTest(FALSE)

Run the test units from within Komodo
koUnit_runTest()

End(Not run)

Log SciViews R log management functions

Description

These functions define the code of test functions. They are designed to check the result of some test
calculation.

Usage

Log(description = NULL)
createLog(description = NULL, deleteExisting = FALSE)
clearLog()
errorLog(stopit = TRUE, summarize = TRUE)
lastTest()
lastSuite()

Arguments

description a (short) character string describing this test suite log.

deleteExisting do we delete an existing a .Log object already defined in .GlobalEnv (no, by
default)?

stopit do we issue an error (stop() in case of any error or failure? This is particularly
useful if you want to interrupt R CMD check on packages, when you included
one or more test suites in examples (see ?unitTests.

summarize should the summary of the log be printed in case we stop execution of the code
when an error is found (see stopit argument. It is, indeed, useful to indicate at
this time which tests failed or raised an error. So, this argument should usually
be left at its default value.

Details

svUnit records results of assertions (using the checkxxx() functions) in a ’svSuiteData’ object named
.Log and located in .GlobalEnv. Hence, this log is easy to access. However, in order to avoid errors
in your code in case this object was deleted, or not created, it is better to access it using Log()
which take care to create the object if it is missing.

10 svSuite

Value

Log() and createLog() return the .Log object defined in .GlobalEnv by reference (it is indeed an
environment). So, you can use its content (and change it, if you write functions to manipulate this
log).

clearLog() return invisibly TRUE or FALSE, depending if an existing log object was deleted or
not.

errorLog() is mainly used for its side-effect of stopping code execution and/or printing a sum-
mmary of the test runs in the context of example massaging in R CMD check (see the \"Writing
R extensions\" manual). However, this function also returns invisibly a contingency table with the
number of successes, failures, errors and deactivated tests recorded so far.

lastTest() and lastSuite() recall results of last test and last suite run, respectively.

Author(s)

Philippe Grosjean <phgrosjean@sciviews.org>

See Also

svSuiteData, svSuite, svTest, check

Examples

clearLog() # Clear the svUnit log

Two correct tests
(checkTrue(1 < 2))
(checkException(log("a")))
errorLog() # Nothing, because there is no error

Not run:
(checkTrue(1 > 2)) # This test fails
lastTest() # Print results of last test
errorLog() # Stop and summarize the tests run so far

End(Not run)

clearLog()

svSuite Create and run test suites by collecting together unit tests and function
tests defined in objects

svSuite 11

Description

A ’svSuite’ object is essentially a list of test units directories (or packages, in this case, correspond-
ing directories are PKG/unitTests and its subdirectories), and of object names containing tests to
add temporarily to the test suite. These must be formatted in a concise way as described for the
’tests’ argument.

svSuiteList() lists all loaded packages having /unitTests/runit*.R files (or similar files in subdi-
rectories), and all objects in the user workspace that have a ’test’ attribute, or are ’svTest’ objects
(by default). It is a rather exhaustive list of all test items currently available in the current R session,
but restricted by getOption("svUnit.excludeList").

makeUnit() writes a test unit on disk with the tests from the objects lised in the ’svSuite’ object
that do not belong yet to a test unit. runTest() runs all the test in packages, directories and objects
listed in the ’svSuite’ object.

Usage

svSuite(tests)

as.svSuite(x)
is.svSuite(x)

svSuiteList(packages = TRUE, objects = TRUE, dirs = getOption("svUnit.dirs"),
excludeList = getOption("svUnit.excludeList"), pos = .GlobalEnv,
loadPackages = FALSE)

S3 method for class 'svSuite'
print(x, ...)
S3 method for class 'svSuite'
makeUnit(x, name = make.names(deparse(substitute(x))),
dir = tempdir(), objfile = "", codeSetUp = NULL, codeTearDown = NULL,
pos = .GlobalEnv, ...)
S3 method for class 'svSuite'
runTest(x, name = make.names(deparse(substitute(x))),

unitname = NULL, ...)

Arguments

tests a character string with items to include in the test suite. It could be ’pack-
age:PKG’ for including test units located in the /unitTests subdirectory of the
package PGK, or ’package:PKG (SUITE)’ for test units located in the subdirec-
tory /unitTests/SUITE of package PKG, or ’dir:MYDIR’ for including test units
in MYDIR, or ’test(OBJ)’ for tests embedded in an object, or ’OBJ’ for ’svTest’
object directly.

x any kind of object.

packages do we list test units available in loaded packages? Alternatively one can provide
a character vector of package names, and it will be used to filter packages (take
care: in this case it will look at installed packages, not only loaded packages)!

12 svSuite

objects do we list test available in objects? Alternatively, one can provide a character
vector of object names, and it will filter objects in ’pos’ according to this vector.

dirs an additional list of directories where to look for more test units. For conve-
nience, this list can simply be saved as an ’svUnit.dirs’ options.

excludeList a list of items to exclude from the listing. The function uses regular expression
to match the exclusions. So, for instance, specifying "package:MYPKG" will
exclude all items from package ’MYPKG’, while using "package:MYPKG$" will
exclude only tests suites defined in the .../MYPKG/unitTests directory, bur not
in its subdirectories. For convenience, it can be saved in a ’svUnit.excludeList’
option. By default, all tests for packages whose name start with ’sv’ or ’RUnit’
are excluded, that is, c("package:sv", "package:RUnit").

pos the environment to look for ’objects’ (environment, character string with name
of an environment, or interger with position of the environment in the search
path.

loadPackages in the case a list of packages is provided in packages =, do we make sure that
these packages are loaded? If yes, the function will try to load all packages in
that list that are not loaded yet and will issue a warning for the packages not
found. Default, FALSE.

name the name of the test suite to build.

dir the directory where to create the test unit file

objfile the path to the file containing the original source code of the object being tested.
This argument is used to bring a context for a test and allow a GUI to automati-
cally open the source file for edition when the user clicks on a test that failed or
raised an error.

codeSetUp an expression with some code you want to add to the .setUp() function in
your unit file (this function is executed before each test.

codeTearDown an expression with some code you want to add to the .tearDown() function in
your unit file (this function is executed after each test.

unitname the name of a unit to run inside the suite. If NULL (by default), all units are run.

... further arguments to pass to makeUnit() or runTest() (not used yet).

Details

Thanks to the variety of sources allowed for tests, it is possible to define these tests in a structured
way, inside packages, like for the ’RUnit’ package (but with automatic recognition of test units
associated to packages, in the present case). It is also easy to define tests more loosely by just
attaching those tests to the objects you want to check. Whenever there objects are loaded in the
user’s workspace, their tests are available. In both cases, a test unit file on disk is sourced in a local
environment and test functions are run (same approach as in the ’RUnit’ package, and the same test
unit files should be compatibles with both ’RUnit’ and ’svUnit’ packages), but in the case of a loosy
definition of the tests by attachment to objects, the test unit file is created on the fly in the temporary
directory (by default).

At any time, you can transform a series of tests loosy attached to objects into a test unit file by apply-
ing makeUnit() to a ’svSuite’ object, probably specifying another directory than the (default) tem-
porary dir for more permanent storage of your test unit file. The best choice is the ’/inst/unitTests’

svSuite 13

directory of a package source, or one of its subdirectories. That way, your test unit file(s) will be
automatically listed and available each time you load the compiled package in R (if you list them
using svSuiteList()). Of course, you still can exclude tests from given packages by adding ’pack-
age:PKG’ in the exclusion list with something like: options(svUnit.excludeList = c(getOption("svUnit.excludeList"), "package:PKG")).

Value

svSuite(), as.svSuite() and svSuiteList return a ’svSuite’ object. is.svSuite() returns
TRUE if the object is an ’svSuite’.

makeUnit() creates a test unit file on disk, and runTest() run the tests in such a file. They are
used for their side-effect, but the first one also returns the file created, and the second one returns
invisibly the list of all test unit files that where sourced ans run.

Author(s)

Philippe Grosjean <phgrosjean@sciviews.org>

See Also

svSuiteData, svTest, Log, check, checkTrue

Examples

svSuiteList() # List all currently available test units and test cases
Exclusion list is used (regular expression filtering!). It contains:
(oex <- getOption("svUnit.excludeList"))
Clear it, and relist available test units
options(svUnit.excludeList = NULL)
svSuiteList()

Two functions that include their test cases
Square <- function(x) return(x^2)
test(Square) <- function() {
checkEquals(9, Square(3))
checkEquals(c(1, 4, 9), Square(1:3))
checkException(Square("xx"))
}

Cube <- function(x) return(x^3)
test(Cube) <- function() {
checkEquals(27, Cube(3))
checkEquals(c(1, 8, 28), Cube(1:3))
checkException(Cube("xx"))
}

A separate test case object (not attached to a particular object)
This is the simplest way to loosely define quick and durty integration tests
test_Integrate <- svTest(function() {
checkTrue(1 < 2, "check1")
v <- 1:3 # The reference
w <- 1:3 # The value to compare to the reference

14 svSuiteData

checkEquals(v, w)
})

A function without test cases (will be filtered out of the suite list)
foo <- function(x) return(x)

Look now which tests are available
svSuiteList()

Only objects, no package units
svSuiteList(packages = FALSE)

Not run:
Create the test unit file for all objects with tests in .GlobalEnv
myunit <- makeUnit(svSuiteList(), name = "AllTests")
file.show(myunit, delete.file = TRUE)

End(Not run)

Filter objects using a list (object with/without tests and a nonexisting obj)
svSuiteList(packages = FALSE, objects = c("Cube", "foo", "bar"))

Create another svSuite object with selected test items
(mysuite <- svSuite(c("package:svUnit (VirtualClass)", "test(Cube)")))
is.svSuite(mysuite) # Should be!

Not run:
Run all the tests currently available
(runTest(svSuiteList(), name = "AllTests"))
summary(Log())

End(Not run)

Restore previous exclusion list, and clean up the environment
options(svUnit.excludeList = oex)
rm(Square, Cube, foo, test_Integrate, mysuite, myunit, oex)

svSuiteData Objects of class ’svSuiteData’ contain results from running test suites

Description

The ’svSuiteData’ object contains results of all test run in one or more test suites. The checkxxx()
functions and the runTest() method generate data (objects ’svTestData’) contained in the default
’svSuiteData’ named .Log and located in .GlobalEnv. It is then possible to display and report
information it contains in various ways to analyze the results.

Usage

is.svSuiteData(x)

svSuiteData 15

S3 method for class 'svSuiteData'
stats(object, ...)

metadata(object, ...)
S3 method for class 'svSuiteData'
metadata(object, fields = c("R.version", "sessionInfo",
"time", "description"), ...)

S3 method for class 'svSuiteData'
print(x, all = FALSE, file = "", append = FALSE, ...)

S3 method for class 'svSuiteData'
summary(object, ...)

protocol(object, type = "text", file = "", append = FALSE, ...)
Default S3 method:
protocol(object, type = "text", file = "", append = FALSE, ...)
S3 method for class 'svSuiteData'
protocol(object, type = "text", file = "", append = FALSE, ...)

protocol_text(object, file = "", append = FALSE, ...)
S3 method for class 'svSuiteData'
protocol_text(object, file = "", append = FALSE, ...)

protocol_junit(object, ...)
S3 method for class 'svSuiteData'
protocol_junit(object, file = "", append = FALSE, ...)
S3 method for class 'svTestData'
protocol_junit(object, ...)

Arguments

x any kind of object, or a ’svSuiteData’ object in the case of print.

object a ’svSuiteData’ object.

fields character vector. The name of all metadata items you want to extract for the
object. The default value is an exhaustive list of all available metadata (i.e.,
defined by default) in the object, but you can add more: just add a corresponding
attribute to your object.

all do we print concise report for all test, or only for the tests that fail or produce an
error?

file character. The path to the file where to write the report. If file = "", the
protocol report is output to the console

append do we append to this file?

type character. The type of protocol report to create. For the moment, only type = "text"
and type = "junit" are supported, but further types (HTML, LaTeX, Wiki,
etc.) will be provided later.

16 svSuiteData

... further arguments to pass to methods. Not used yet.

Details

A ’svSuiteData’ is, indeed, an environment. The results for the various tests runs are in non hidden
(i.e., names not starting with a dot) objects that are of class ’svTestData’ in this environment. Var-
ious other objects that control the execution of the test, their context, etc. are contained as hidden
objects with name starting with a dot. Note that using an environment instead of a list for this object
allows for a call by reference instead of a usual call by value in R, when passing this object to a
function. This property is largely exploited in all svUnit functions to make sure results of test runs
are centralized in the same log (’svSuiteData’ object).

Value

is.svSuiteData() returns TRUE if the object is an ’svSuiteData’. The various methods serve to
extract or print content in the object.

Author(s)

Philippe Grosjean <phgrosjean@sciviews.org>; Mario Frasca for the junit protocol.

See Also

svSuite, is.svTestData, check, Log

Examples

clearLog() # Clear any existing log

Run some tests
checkTrue(1 < 2)
checkException(log("a"))
foo <- function(x, y = 2) return(x * y)
test(foo) <- function () {

checkEqualsNumeric(4, foo(2))
checkEqualsNumeric(6, foo(2, nonexisting))
checkTrue(is.test(foo))
warning("This is a warning")
cat("Youhou from test!\n") # Don't use, except for debugging!
checkTrue(is.test(test(foo)))
checkIdentical(attr(foo, "test"), test(foo))
checkException(foo(2, nonexisting))
#DEACTIVATED("My deactivation message")
checkException(foo(2)) # This test fails

}
runTest(foo)

Now inspect the log, which is a 'svSuiteData' object
is.svSuiteData(Log())
stats(Log())
metadata(Log())
Log() # Print method

svTest 17

summary(Log())

Not run:
To get a print of the test protocol on file, use:
protocol(Log(), type = "text", file = "RprofProtocol.out")
file.show("RprofProtocol.out")
unlink("RprofProtocol.out")

End(Not run)

rm(foo)

Not run:
Profiling of very simple test runs
library(utils)
createLog(description = "test profiling", deleteExisting = TRUE)
imax <- 3
jmax <- 100
l <- 50
Rprof()
for (i in 1:imax) {
Change the context for these tests

.Log$..Test <- paste("Test", i, sep = "")

.Log$..Tag <- paste("#", i, sep = "")
res <- system.time({

for (j in 1:jmax) checkTrue(i <= j, "My test")
}, gcFirst = TRUE)[3]
print(res)
flush.console()

}
Rprof(NULL)
Look at profile
summaryRprof()
unlink("Rprof.out")

Look at the log
summary(Log())

End(Not run)

svTest Create, attach to and manipulate test functions in R objects

Description

Test functions are functions without arguments with class ’svTest’ containing one or more assertions
using checkxxx() functions. They can be attached to any object as a ’test’ attribute. They can also
be transferred into a more formal test unit file on disk by applying the makeUnit() method.

18 svTest

Usage

svTest(testFun)
as.svTest(x)
is.svTest(x)

test(x)
test(x) <- value
is.test(x)

S3 method for class 'svTest'
print(x, ...)

makeUnit(x, ...)
Default S3 method:
makeUnit(x, name = make.names(deparse(substitute(x))),
dir = tempdir(), objfile = "", codeSetUp = NULL, codeTearDown = NULL, ...)
S3 method for class 'svTest'
makeUnit(x, name = make.names(deparse(substitute(x))),
dir = tempdir(), objfile = "", codeSetUp = NULL, codeTearDown = NULL, ...)

runTest(x, ...)
Default S3 method:
runTest(x, name = deparse(substitute(x)), objfile = "",
tag = "", msg = "", ...)
S3 method for class 'svTest'
runTest(x, name = deparse(substitute(x)), objfile = "",
tag = "", msg = "", ...)
S3 method for class 'list'
runTest(x, ...)

makeTestListFromExamples(packageName, manFilesDir, skipFailing=FALSE)

Arguments

testFun a function without arguments defining assertions (using checkxxx() functions)
for tests to be transformed into a ’svTest’ object.

x any kind of object.

value the tests to place in the object (as ’test’ attribute); could be a ’svTest’ object, or
a function without arguments with assertions (checkxxx() functions).

name the name of a test;

dir the directory where to create the test unit file.

objfile the path to the file containing the original source code of the object being tested.
This argument is used to bring a context for a test and allow a GUI to automati-
cally open the source file for edition when the user clicks on a test that failed or
raised an error.

codeSetUp an expression with some code you want to add to the .setUp() function in
your unit file (this function is executed before each test.

svTest 19

codeTearDown an expression with some code you want to add to the .tearDown() function in
your unit file (this function is executed after each test.

tag a tag is a character string identifying a location in source code files (either a test
unit file, or the original source code of the tested objects defined in objfile.
This character string will be searched by the text editor for easy location of the
cursor near the corresponding‘ test command, or near the location in the original
object that is concerned by this test. Use any string you want to uniquely identify
your tag, both in your files, and in this argument.

msg a message you want to associate with this test run.

packageName a character string identifying the package from which to extract examples.

manFilesDir a character string identifying the directory holding the manual pages and exam-
ples.

skipFailing a logical indicating whether missing or failing documentation examples should
be marked as ‘skipped‘ instead of as ‘failure‘.

... further arguments to the method (not used yet).

Value

A ’svTest’ object for svTest(), as.svTest() and test(). Function is.svTest() returns TRUE
if ’x’ is a ’svTest’ object, and is.test() does the same but also looks in the ’test’ attribute if the
class of ’x’ is not ’svTest’ and returns TRUE if it finds something there.

makeUnit() takes an object, extract its test function and write it in a sourceable test unit on the disk
(it should be compatible with ’RUnit’ test unit files too).

runTest() returns invisibly a ’svTestData’ object with all results after running specified tests.

Author(s)

Philippe Grosjean <phgrosjean@sciviews.org>

See Also

svSuite, is.svTestData, check, Log

Examples

clearLog() # Clear the log file

foo <- function(x, y = 2) return(x * y)
is.test(foo) # No
Create test cases for this function
test(foo) <- function () {
checkEqualsNumeric(4, foo(2))
checkEqualsNumeric(6, foo(2, 3))
checkTrue(is.test(foo))
checkTrue(is.test(test(foo)))
checkIdentical(attr(foo, "test"), test(foo))
checkException(foo(2, "aa"))
checkException(foo("bb"))

20 svTestData

}
is.test(foo) # Yes

Not run:
Create a test unit on disk and view it
unit <- makeUnit(foo)
file.show(unit, delete.file = TRUE)

End(Not run)

Run the test
(runTest(foo))
Same as...
bar <- test(foo)
(runTest(bar))

How fast can we run 100 times such kind of tests (700 test in total)?
(just an indication because in real situation with test unit files, we
have also the time required to source the units!)
system.time(for (i in 1:100) runTest(foo))[3]

is.svTest(test(foo)) # Yes, of course!
When an object without associated test is passed to runTest(), a simple
test containing only a DEACTIVATED entry is build
x <- 1:10
summary(runTest(x))

summary(Log())

rm(foo, bar, x)

svTestData Objects of class ’svTestData’ contain results from running a test

Description

The ’svTestData’ contains results of test run. The checkxxx() functions and the runTest() method
generate one such object which is located in the .Log object in .GlobalEnv. It is then possible to
display and report information it contains in various ways to analyze the results.

Usage

is.svTestData(x)

stats(object, ...)
S3 method for class 'svTestData'
stats(object, ...)

S3 method for class 'svTestData'

svTestData 21

print(x, all = FALSE, header = TRUE, file = "",
append = FALSE, ...)
S3 method for class 'svTestData'
summary(object, header = TRUE, file = "",
append = FALSE, ...)

Arguments

x any kind of object, or a ’svTestData’ object in the case of print.

object a ’svTestData’ object.

all do we print concise report for all test, or only for the tests that fail or produce an
error?

header do we print a header or not?

file character. The path to the file where to write the report. If file = "", the report
is output to the console.

append do we append to this file?

... further arguments to pass to methods. Not used yet.

Value

is.svTestData() returns TRUE if the object is an ’svTestData’. The various methods serve to
extract or print content in the object.

Author(s)

Philippe Grosjean <phgrosjean@sciviews.org>

See Also

svTest, svSuiteData, check, Log

Examples

foo <- function(x, y = 2) return(x * y)
is.test(foo) # No
Create test cases for this function
test(foo) <- function () {
checkEqualsNumeric(4, foo(2))
checkEqualsNumeric(5, foo(2, 3))
checkEqualsNumeric(5, foo(nonexists))
}
Generate a 'svTestData' object by running the test
obj <- runTest(foo) # Equivalent to runTest(test(foo)), but shorter
obj
summary(obj)
stats(obj)
is.svTestData(obj)

rm(foo, obj)

22 unitTests.svUnit

unitTests.svUnit Unit tests for the package svUnit

Description

Performs unit tests defined in this package by running example(unitTests.svUnit). Tests are in
runit*.R files located in the ’/unitTests’ subdirectory or one of its subdirectories (’/inst/unitTests’
and subdirectories in package sources).

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>)

Examples

if (require(svUnit)) {
clearLog()
runTest(svSuite("package:svUnit"), "svUnit")

Tests to run with example() but not with R CMD check
runTest(svSuite("package:svUnit (VirtualClass)"), "VirtualClass")

Not run:
Tests to present in ?unitTests.svUnit but not run automatically
Run all currently loaded packages test cases and test suites
runTest(svSuiteList(), "AllTests")

End(Not run)

Check errors at the end (needed to interrupt R CMD check)
errorLog()

}

Index

∗Topic package
svUnit-package, 2

∗Topic utilities
check, 4
guiTestReport, 6
koUnit, 7
Log, 9
svSuite, 10
svSuiteData, 14
svTest, 17
svTestData, 20
svUnit-package, 2
unitTests.svUnit, 22

as.svSuite (svSuite), 10
as.svTest (svTest), 17

check, 4, 10, 13, 16, 19, 21
checkEquals (check), 4
checkEqualsNumeric (check), 4
checkException (check), 4
checkIdentical (check), 4
checkTrue, 5, 13
checkTrue (check), 4
clearLog (Log), 9
createLog (Log), 9

DEACTIVATED (check), 4

errorLog (Log), 9

guiSuiteAutoList (guiTestReport), 6
guiSuiteList (guiTestReport), 6
guiTestFeedback (guiTestReport), 6
guiTestReport, 5, 6, 8

is.svSuite (svSuite), 10
is.svSuiteData (svSuiteData), 14
is.svTest (svTest), 17
is.svTestData, 16, 19
is.svTestData (svTestData), 20

is.test (svTest), 17

koUnit, 7
koUnit_isAutoTest (koUnit), 7
koUnit_runTest (koUnit), 7
koUnit_setAutoTest (koUnit), 7
koUnit_showRUnitPane (koUnit), 7
koUnit_version, 7
koUnit_version (koUnit), 7

lastSuite (Log), 9
lastTest (Log), 9
Log, 5, 9, 13, 16, 19, 21

makeTestListFromExamples (svTest), 17
makeUnit (svTest), 17
makeUnit.svSuite (svSuite), 10
metadata (svSuiteData), 14

print.svSuite (svSuite), 10
print.svSuiteData (svSuiteData), 14
print.svTest (svTest), 17
print.svTestData (svTestData), 20
protocol (svSuiteData), 14
protocol_junit (svSuiteData), 14
protocol_text (svSuiteData), 14

RUnit, 3
runTest (svTest), 17
runTest.svSuite (svSuite), 10

stats (svTestData), 20
stats.svSuiteData (svSuiteData), 14
summary.svSuiteData (svSuiteData), 14
summary.svTestData (svTestData), 20
svSuite, 7, 10, 10, 16, 19
svSuiteData, 10, 13, 14, 21
svSuiteList (svSuite), 10
svTest, 5, 7, 10, 13, 17, 21
svTestData, 20
svUnit (svUnit-package), 2

23

24 INDEX

svUnit-package, 2

test (svTest), 17
test<- (svTest), 17

unitTests.svUnit, 22

	svUnit-package
	check
	guiTestReport
	koUnit
	Log
	svSuite
	svSuiteData
	svTest
	svTestData
	unitTests.svUnit
	Index

