You’ll need several packages from the tidyverse in addition to weathercan
to complete the following analysis.
You can merge weather data with other data frames by linearly interpolating between points.
For example, here we have a dataset of weather data from Kamloops
## Observations: 4,368
## Variables: 35
## $ station_name <chr> "KAMLOOPS A", "KAMLOOPS A", "KAMLOOPS A", "KAMLOOPS A", "KAMLOOPS A", "K…
## $ station_id <dbl> 51423, 51423, 51423, 51423, 51423, 51423, 51423, 51423, 51423, 51423, 51…
## $ station_operator <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ prov <chr> "BC", "BC", "BC", "BC", "BC", "BC", "BC", "BC", "BC", "BC", "BC", "BC", …
## $ lat <dbl> 50.7, 50.7, 50.7, 50.7, 50.7, 50.7, 50.7, 50.7, 50.7, 50.7, 50.7, 50.7, …
## $ lon <dbl> -120.45, -120.45, -120.45, -120.45, -120.45, -120.45, -120.45, -120.45, …
## $ elev <dbl> 345.3, 345.3, 345.3, 345.3, 345.3, 345.3, 345.3, 345.3, 345.3, 345.3, 34…
## $ climate_id <chr> "1163781", "1163781", "1163781", "1163781", "1163781", "1163781", "11637…
## $ WMO_id <chr> "71887", "71887", "71887", "71887", "71887", "71887", "71887", "71887", …
## $ TC_id <chr> "YKA", "YKA", "YKA", "YKA", "YKA", "YKA", "YKA", "YKA", "YKA", "YKA", "Y…
## $ date <date> 2016-01-01, 2016-01-01, 2016-01-01, 2016-01-01, 2016-01-01, 2016-01-01,…
## $ time <dttm> 2016-01-01 00:00:00, 2016-01-01 01:00:00, 2016-01-01 02:00:00, 2016-01-…
## $ year <chr> "2016", "2016", "2016", "2016", "2016", "2016", "2016", "2016", "2016", …
## $ month <chr> "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", …
## $ day <chr> "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", …
## $ hour <chr> "00:00", "01:00", "02:00", "03:00", "04:00", "05:00", "06:00", "07:00", …
## $ weather <chr> NA, "Mostly Cloudy", NA, NA, "Cloudy", NA, NA, "Cloudy", NA, "Snow", "Sn…
## $ hmdx <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ hmdx_flag <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ pressure <dbl> 99.95, 99.93, 99.92, 99.90, 99.86, 99.82, 99.80, 99.78, 99.77, 99.78, 99…
## $ pressure_flag <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ rel_hum <dbl> 74, 76, 74, 73, 70, 71, 69, 69, 71, 71, 71, 70, 69, 70, 68, 68, 70, 74, …
## $ rel_hum_flag <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ temp <dbl> -9.1, -9.6, -9.9, -9.5, -9.4, -9.8, -10.0, -10.2, -10.1, -9.7, -9.4, -9.…
## $ temp_dew <dbl> -12.9, -13.1, -13.7, -13.5, -13.9, -14.1, -14.7, -14.9, -14.4, -14.0, -1…
## $ temp_dew_flag <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ temp_flag <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ visib <dbl> 64.4, 64.4, 64.4, 64.4, 64.4, 64.4, 64.4, 64.4, 48.3, 48.3, 48.3, 48.3, …
## $ visib_flag <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ wind_chill <dbl> -17, -17, -18, -17, -17, -17, -18, -17, -17, -16, -15, -14, -14, -13, -1…
## $ wind_chill_flag <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ wind_dir <dbl> 13, 11, 11, 11, 11, 10, 9, 7, 7, 10, 11, 10, 10, 13, 11, 10, 10, 9, 12, …
## $ wind_dir_flag <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ wind_spd <dbl> 19, 20, 20, 18, 18, 16, 23, 15, 14, 15, 12, 11, 12, 9, 10, 12, 11, 12, 1…
## $ wind_spd_flag <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …
As well as a data set of finch visits to an RFID feeder
## Observations: 16,886
## Variables: 10
## $ animal_id <fct> 041868FF93, 041868FF93, 041868FF93, 06200003BB, 06200003BB, 06200003BB, 0620000…
## $ date <date> 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-0…
## $ time <dttm> 2016-03-01 06:57:42, 2016-03-01 06:58:41, 2016-03-01 07:07:21, 2016-03-01 07:3…
## $ logger_id <fct> 2300, 2300, 2300, 2400, 2400, 2400, 2400, 2400, 2300, 2300, 2300, 2300, 2300, 2…
## $ species <chr> "Mountain Chickadee", "Mountain Chickadee", "Mountain Chickadee", "House Finch"…
## $ age <chr> "AHY", "AHY", "AHY", "SY", "SY", "SY", "SY", "SY", "AHY", "AHY", "AHY", "AHY", …
## $ sex <chr> "U", "U", "U", "M", "M", "M", "M", "M", "F", "F", "F", "F", "F", "M", "F", "M",…
## $ site_name <chr> "Kamloops, BC", "Kamloops, BC", "Kamloops, BC", "Kamloops, BC", "Kamloops, BC",…
## $ lon <dbl> -120.3622, -120.3622, -120.3622, -120.3635, -120.3635, -120.3635, -120.3635, -1…
## $ lat <dbl> 50.66967, 50.66967, 50.66967, 50.66938, 50.66938, 50.66938, 50.66938, 50.66938,…
Although the times in the weather data do not exactly match those in the finch data, we can merge them together through linear interpolation. This function uses the approx
function from the stats
package under the hood.
Here we specify that we only want the temperature (temp
) column:
## temp is missing 4 out of 4368 data, interpolation may be less accurate as a result.
## animal_id date time logger_id
## 0620000513:7624 Min. :2016-03-01 Min. :2016-03-01 06:57:42 1500:6370
## 041868D861:2767 1st Qu.:2016-03-05 1st Qu.:2016-03-05 13:54:13 2100: 968
## 0620000514:1844 Median :2016-03-09 Median :2016-03-09 16:54:47 2200:2266
## 06200004F8:1386 Mean :2016-03-08 Mean :2016-03-09 07:45:58 2300:3531
## 041868BED6: 944 3rd Qu.:2016-03-13 3rd Qu.:2016-03-13 08:24:58 2400:1477
## 06200003BB: 708 Max. :2016-03-16 Max. :2016-03-16 16:39:30 2700:2274
## (Other) :1613
## species age sex site_name lon
## Length:16886 Length:16886 Length:16886 Length:16886 Min. :-120.4
## Class :character Class :character Class :character Class :character 1st Qu.:-120.4
## Mode :character Mode :character Mode :character Mode :character Median :-120.4
## Mean :-120.4
## 3rd Qu.:-120.4
## Max. :-120.4
##
## lat temp
## Min. :50.67 Min. :-0.2317
## 1st Qu.:50.67 1st Qu.: 5.0561
## Median :50.67 Median : 7.1651
## Mean :50.67 Mean : 7.4349
## 3rd Qu.:50.67 3rd Qu.: 9.3319
## Max. :50.67 Max. :16.3712
##
## Observations: 16,886
## Variables: 11
## $ animal_id <fct> 041868FF93, 041868FF93, 041868FF93, 06200003BB, 06200003BB, 06200003BB, 0620000…
## $ date <date> 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-0…
## $ time <dttm> 2016-03-01 06:57:42, 2016-03-01 06:58:41, 2016-03-01 07:07:21, 2016-03-01 07:3…
## $ logger_id <fct> 2300, 2300, 2300, 2400, 2400, 2400, 2400, 2400, 2300, 2300, 2300, 2300, 2300, 2…
## $ species <chr> "Mountain Chickadee", "Mountain Chickadee", "Mountain Chickadee", "House Finch"…
## $ age <chr> "AHY", "AHY", "AHY", "SY", "SY", "SY", "SY", "SY", "AHY", "AHY", "AHY", "AHY", …
## $ sex <chr> "U", "U", "U", "M", "M", "M", "M", "M", "F", "F", "F", "F", "F", "M", "F", "M",…
## $ site_name <chr> "Kamloops, BC", "Kamloops, BC", "Kamloops, BC", "Kamloops, BC", "Kamloops, BC",…
## $ lon <dbl> -120.3622, -120.3622, -120.3622, -120.3635, -120.3635, -120.3635, -120.3635, -1…
## $ lat <dbl> 50.66967, 50.66967, 50.66967, 50.66938, 50.66938, 50.66938, 50.66938, 50.66938,…
## $ temp <dbl> 3.984667, 3.991222, 4.036750, 4.162833, 4.162917, 4.163000, 4.163083, 4.163167,…
ggplot(data = finches_temperature, aes(x = temp, fill = animal_id)) +
theme_bw() +
theme(legend.position = "none") +
geom_histogram(binwidth = 1) +
labs(x = "Temperature (C)", y = "Activity Count", fill = "Finch ID")
Or summarized:
finches_temperature <- finches_temperature %>%
group_by(date) %>%
summarize(n = length(time),
temp = mean(temp))
ggplot(data = finches_temperature, aes(x = date, y = n)) +
theme_bw() +
theme(legend.position = "top") +
geom_point(aes(shape = "Activity")) +
geom_line(aes(y = temp * 100, colour = "Temperature")) +
scale_colour_discrete(name = "") +
scale_shape_discrete(name = "") +
scale_y_continuous(name = "Activity", sec.axis = sec_axis(~. / 100, name = "Temperature (C)"))
By default, gaps of 2 hours (or 2 days, with a daily scale) will be interpolated over (i.e. they will be filled with values interpolated from either side of the gap), but longer gaps will be skipped and filled with NA
s. You can adjust this behaviour with na_gap
. Note that as Environment and Climate Change Canada data is downloaded on an hourly scale, it makes no sense to apply na_gap
values of less than 1.
In this example, note the larger number of NA
s in temp
and how it corresponds to the missing variables in the weather dataset:
finches_temperature <- weather_interp(data = finches, weather = kamloops,
cols = "temp", na_gap = 1)
## temp is missing 4 out of 4368 data, interpolation may be less accurate as a result.
## animal_id date time logger_id
## 0620000513:7624 Min. :2016-03-01 Min. :2016-03-01 06:57:42 1500:6370
## 041868D861:2767 1st Qu.:2016-03-05 1st Qu.:2016-03-05 13:54:13 2100: 968
## 0620000514:1844 Median :2016-03-09 Median :2016-03-09 16:54:47 2200:2266
## 06200004F8:1386 Mean :2016-03-08 Mean :2016-03-09 07:45:58 2300:3531
## 041868BED6: 944 3rd Qu.:2016-03-13 3rd Qu.:2016-03-13 08:24:58 2400:1477
## 06200003BB: 708 Max. :2016-03-16 Max. :2016-03-16 16:39:30 2700:2274
## (Other) :1613
## species age sex site_name lon
## Length:16886 Length:16886 Length:16886 Length:16886 Min. :-120.4
## Class :character Class :character Class :character Class :character 1st Qu.:-120.4
## Mode :character Mode :character Mode :character Mode :character Median :-120.4
## Mean :-120.4
## 3rd Qu.:-120.4
## Max. :-120.4
##
## lat temp
## Min. :50.67 Min. :-0.2317
## 1st Qu.:50.67 1st Qu.: 5.0746
## Median :50.67 Median : 7.1668
## Mean :50.67 Mean : 7.4433
## 3rd Qu.:50.67 3rd Qu.: 9.3458
## Max. :50.67 Max. :16.3712
## NA's :84
## # A tibble: 84 x 3
## date time temp
## <date> <dttm> <dbl>
## 1 2016-03-10 2016-03-10 16:00:12 NA
## 2 2016-03-10 2016-03-10 16:00:33 NA
## 3 2016-03-10 2016-03-10 16:00:36 NA
## 4 2016-03-10 2016-03-10 16:00:39 NA
## 5 2016-03-10 2016-03-10 16:00:42 NA
## 6 2016-03-10 2016-03-10 16:00:45 NA
## 7 2016-03-10 2016-03-10 16:00:48 NA
## 8 2016-03-10 2016-03-10 16:00:51 NA
## 9 2016-03-10 2016-03-10 16:00:54 NA
## 10 2016-03-10 2016-03-10 16:00:57 NA
## # … with 74 more rows
## # A tibble: 4 x 2
## time temp
## <dttm> <dbl>
## 1 2016-02-11 19:00:00 NA
## 2 2016-03-08 13:00:00 NA
## 3 2016-03-11 01:00:00 NA
## 4 2016-04-09 00:00:00 NA
We could also add in more than one column at a time:
## temp is missing 4 out of 4368 data, interpolation may be less accurate as a result.
## wind_spd is missing 4 out of 4368 data, interpolation may be less accurate as a result.
## animal_id date time logger_id
## 0620000513:7624 Min. :2016-03-01 Min. :2016-03-01 06:57:42 1500:6370
## 041868D861:2767 1st Qu.:2016-03-05 1st Qu.:2016-03-05 13:54:13 2100: 968
## 0620000514:1844 Median :2016-03-09 Median :2016-03-09 16:54:47 2200:2266
## 06200004F8:1386 Mean :2016-03-08 Mean :2016-03-09 07:45:58 2300:3531
## 041868BED6: 944 3rd Qu.:2016-03-13 3rd Qu.:2016-03-13 08:24:58 2400:1477
## 06200003BB: 708 Max. :2016-03-16 Max. :2016-03-16 16:39:30 2700:2274
## (Other) :1613
## species age sex site_name lon
## Length:16886 Length:16886 Length:16886 Length:16886 Min. :-120.4
## Class :character Class :character Class :character Class :character 1st Qu.:-120.4
## Mode :character Mode :character Mode :character Mode :character Median :-120.4
## Mean :-120.4
## 3rd Qu.:-120.4
## Max. :-120.4
##
## lat temp wind_spd
## Min. :50.67 Min. :-0.2317 Min. : 1.000
## 1st Qu.:50.67 1st Qu.: 5.0561 1st Qu.: 7.634
## Median :50.67 Median : 7.1651 Median :13.738
## Mean :50.67 Mean : 7.4349 Mean :14.443
## 3rd Qu.:50.67 3rd Qu.: 9.3319 3rd Qu.:19.907
## Max. :50.67 Max. :16.3712 Max. :44.939
##
## Observations: 16,886
## Variables: 12
## $ animal_id <fct> 041868FF93, 041868FF93, 041868FF93, 06200003BB, 06200003BB, 06200003BB, 0620000…
## $ date <date> 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-0…
## $ time <dttm> 2016-03-01 06:57:42, 2016-03-01 06:58:41, 2016-03-01 07:07:21, 2016-03-01 07:3…
## $ logger_id <fct> 2300, 2300, 2300, 2400, 2400, 2400, 2400, 2400, 2300, 2300, 2300, 2300, 2300, 2…
## $ species <chr> "Mountain Chickadee", "Mountain Chickadee", "Mountain Chickadee", "House Finch"…
## $ age <chr> "AHY", "AHY", "AHY", "SY", "SY", "SY", "SY", "SY", "AHY", "AHY", "AHY", "AHY", …
## $ sex <chr> "U", "U", "U", "M", "M", "M", "M", "M", "F", "F", "F", "F", "F", "M", "F", "M",…
## $ site_name <chr> "Kamloops, BC", "Kamloops, BC", "Kamloops, BC", "Kamloops, BC", "Kamloops, BC",…
## $ lon <dbl> -120.3622, -120.3622, -120.3622, -120.3635, -120.3635, -120.3635, -120.3635, -1…
## $ lat <dbl> 50.66967, 50.66967, 50.66967, 50.66938, 50.66938, 50.66938, 50.66938, 50.66938,…
## $ temp <dbl> 3.984667, 3.991222, 4.036750, 4.162833, 4.162917, 4.163000, 4.163083, 4.163167,…
## $ wind_spd <dbl> 22.88500, 22.93417, 22.26500, 19.74333, 19.74167, 19.74000, 19.73833, 19.73667,…
finches_weather <- finches_weather %>%
group_by(date) %>%
summarize(n = length(time),
temp = mean(temp),
wind_spd = mean(wind_spd))
ggplot(data = finches_weather, aes(x = date, y = n)) +
theme_bw() +
theme(legend.position = "top") +
geom_bar(stat = "identity") +
geom_line(aes(y = temp * 50, colour = "Temperature"), size = 2) +
geom_line(aes(y = wind_spd * 50, colour = "Wind Speed"), size = 2) +
scale_colour_discrete(name = "") +
scale_y_continuous(name = "Activity Counts", sec.axis = sec_axis(~. / 50, name = "Temperature (C) / Wind Speed (km/h)"))