Interpolating

Steffi LaZerte

2020-02-04

Packages

You’ll need several packages from the tidyverse in addition to weathercan to complete the following analysis.

library(weathercan)
library(ggplot2)
library(dplyr)

General usage

You can merge weather data with other data frames by linearly interpolating between points.

For example, here we have a dataset of weather data from Kamloops

glimpse(kamloops)
## Observations: 4,368
## Variables: 35
## $ station_name     <chr> "KAMLOOPS A", "KAMLOOPS A", "KAMLOOPS A", "KAMLOOPS A", "KAMLOOPS A", "K…
## $ station_id       <dbl> 51423, 51423, 51423, 51423, 51423, 51423, 51423, 51423, 51423, 51423, 51…
## $ station_operator <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ prov             <chr> "BC", "BC", "BC", "BC", "BC", "BC", "BC", "BC", "BC", "BC", "BC", "BC", …
## $ lat              <dbl> 50.7, 50.7, 50.7, 50.7, 50.7, 50.7, 50.7, 50.7, 50.7, 50.7, 50.7, 50.7, …
## $ lon              <dbl> -120.45, -120.45, -120.45, -120.45, -120.45, -120.45, -120.45, -120.45, …
## $ elev             <dbl> 345.3, 345.3, 345.3, 345.3, 345.3, 345.3, 345.3, 345.3, 345.3, 345.3, 34…
## $ climate_id       <chr> "1163781", "1163781", "1163781", "1163781", "1163781", "1163781", "11637…
## $ WMO_id           <chr> "71887", "71887", "71887", "71887", "71887", "71887", "71887", "71887", …
## $ TC_id            <chr> "YKA", "YKA", "YKA", "YKA", "YKA", "YKA", "YKA", "YKA", "YKA", "YKA", "Y…
## $ date             <date> 2016-01-01, 2016-01-01, 2016-01-01, 2016-01-01, 2016-01-01, 2016-01-01,…
## $ time             <dttm> 2016-01-01 00:00:00, 2016-01-01 01:00:00, 2016-01-01 02:00:00, 2016-01-…
## $ year             <chr> "2016", "2016", "2016", "2016", "2016", "2016", "2016", "2016", "2016", …
## $ month            <chr> "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", …
## $ day              <chr> "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", …
## $ hour             <chr> "00:00", "01:00", "02:00", "03:00", "04:00", "05:00", "06:00", "07:00", …
## $ weather          <chr> NA, "Mostly Cloudy", NA, NA, "Cloudy", NA, NA, "Cloudy", NA, "Snow", "Sn…
## $ hmdx             <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ hmdx_flag        <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ pressure         <dbl> 99.95, 99.93, 99.92, 99.90, 99.86, 99.82, 99.80, 99.78, 99.77, 99.78, 99…
## $ pressure_flag    <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ rel_hum          <dbl> 74, 76, 74, 73, 70, 71, 69, 69, 71, 71, 71, 70, 69, 70, 68, 68, 70, 74, …
## $ rel_hum_flag     <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ temp             <dbl> -9.1, -9.6, -9.9, -9.5, -9.4, -9.8, -10.0, -10.2, -10.1, -9.7, -9.4, -9.…
## $ temp_dew         <dbl> -12.9, -13.1, -13.7, -13.5, -13.9, -14.1, -14.7, -14.9, -14.4, -14.0, -1…
## $ temp_dew_flag    <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ temp_flag        <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ visib            <dbl> 64.4, 64.4, 64.4, 64.4, 64.4, 64.4, 64.4, 64.4, 48.3, 48.3, 48.3, 48.3, …
## $ visib_flag       <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ wind_chill       <dbl> -17, -17, -18, -17, -17, -17, -18, -17, -17, -16, -15, -14, -14, -13, -1…
## $ wind_chill_flag  <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ wind_dir         <dbl> 13, 11, 11, 11, 11, 10, 9, 7, 7, 10, 11, 10, 10, 13, 11, 10, 10, 9, 12, …
## $ wind_dir_flag    <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ wind_spd         <dbl> 19, 20, 20, 18, 18, 16, 23, 15, 14, 15, 12, 11, 12, 9, 10, 12, 11, 12, 1…
## $ wind_spd_flag    <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", …

As well as a data set of finch visits to an RFID feeder

glimpse(finches)
## Observations: 16,886
## Variables: 10
## $ animal_id <fct> 041868FF93, 041868FF93, 041868FF93, 06200003BB, 06200003BB, 06200003BB, 0620000…
## $ date      <date> 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-0…
## $ time      <dttm> 2016-03-01 06:57:42, 2016-03-01 06:58:41, 2016-03-01 07:07:21, 2016-03-01 07:3…
## $ logger_id <fct> 2300, 2300, 2300, 2400, 2400, 2400, 2400, 2400, 2300, 2300, 2300, 2300, 2300, 2…
## $ species   <chr> "Mountain Chickadee", "Mountain Chickadee", "Mountain Chickadee", "House Finch"…
## $ age       <chr> "AHY", "AHY", "AHY", "SY", "SY", "SY", "SY", "SY", "AHY", "AHY", "AHY", "AHY", …
## $ sex       <chr> "U", "U", "U", "M", "M", "M", "M", "M", "F", "F", "F", "F", "F", "M", "F", "M",…
## $ site_name <chr> "Kamloops, BC", "Kamloops, BC", "Kamloops, BC", "Kamloops, BC", "Kamloops, BC",…
## $ lon       <dbl> -120.3622, -120.3622, -120.3622, -120.3635, -120.3635, -120.3635, -120.3635, -1…
## $ lat       <dbl> 50.66967, 50.66967, 50.66967, 50.66938, 50.66938, 50.66938, 50.66938, 50.66938,…

Although the times in the weather data do not exactly match those in the finch data, we can merge them together through linear interpolation. This function uses the approx function from the stats package under the hood.

Here we specify that we only want the temperature (temp) column:

finches_temperature <- weather_interp(data = finches, weather = kamloops, cols = "temp")
## temp is missing 4 out of 4368 data, interpolation may be less accurate as a result.
summary(finches_temperature)
##       animal_id         date                 time                     logger_id  
##  0620000513:7624   Min.   :2016-03-01   Min.   :2016-03-01 06:57:42   1500:6370  
##  041868D861:2767   1st Qu.:2016-03-05   1st Qu.:2016-03-05 13:54:13   2100: 968  
##  0620000514:1844   Median :2016-03-09   Median :2016-03-09 16:54:47   2200:2266  
##  06200004F8:1386   Mean   :2016-03-08   Mean   :2016-03-09 07:45:58   2300:3531  
##  041868BED6: 944   3rd Qu.:2016-03-13   3rd Qu.:2016-03-13 08:24:58   2400:1477  
##  06200003BB: 708   Max.   :2016-03-16   Max.   :2016-03-16 16:39:30   2700:2274  
##  (Other)   :1613                                                                 
##    species              age                sex             site_name              lon        
##  Length:16886       Length:16886       Length:16886       Length:16886       Min.   :-120.4  
##  Class :character   Class :character   Class :character   Class :character   1st Qu.:-120.4  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character   Median :-120.4  
##                                                                              Mean   :-120.4  
##                                                                              3rd Qu.:-120.4  
##                                                                              Max.   :-120.4  
##                                                                                              
##       lat             temp        
##  Min.   :50.67   Min.   :-0.2317  
##  1st Qu.:50.67   1st Qu.: 5.0561  
##  Median :50.67   Median : 7.1651  
##  Mean   :50.67   Mean   : 7.4349  
##  3rd Qu.:50.67   3rd Qu.: 9.3319  
##  Max.   :50.67   Max.   :16.3712  
## 
glimpse(finches_temperature)
## Observations: 16,886
## Variables: 11
## $ animal_id <fct> 041868FF93, 041868FF93, 041868FF93, 06200003BB, 06200003BB, 06200003BB, 0620000…
## $ date      <date> 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-0…
## $ time      <dttm> 2016-03-01 06:57:42, 2016-03-01 06:58:41, 2016-03-01 07:07:21, 2016-03-01 07:3…
## $ logger_id <fct> 2300, 2300, 2300, 2400, 2400, 2400, 2400, 2400, 2300, 2300, 2300, 2300, 2300, 2…
## $ species   <chr> "Mountain Chickadee", "Mountain Chickadee", "Mountain Chickadee", "House Finch"…
## $ age       <chr> "AHY", "AHY", "AHY", "SY", "SY", "SY", "SY", "SY", "AHY", "AHY", "AHY", "AHY", …
## $ sex       <chr> "U", "U", "U", "M", "M", "M", "M", "M", "F", "F", "F", "F", "F", "M", "F", "M",…
## $ site_name <chr> "Kamloops, BC", "Kamloops, BC", "Kamloops, BC", "Kamloops, BC", "Kamloops, BC",…
## $ lon       <dbl> -120.3622, -120.3622, -120.3622, -120.3635, -120.3635, -120.3635, -120.3635, -1…
## $ lat       <dbl> 50.66967, 50.66967, 50.66967, 50.66938, 50.66938, 50.66938, 50.66938, 50.66938,…
## $ temp      <dbl> 3.984667, 3.991222, 4.036750, 4.162833, 4.162917, 4.163000, 4.163083, 4.163167,…
ggplot(data = finches_temperature, aes(x = temp, fill = animal_id)) +
  theme_bw() +
  theme(legend.position = "none") + 
  geom_histogram(binwidth = 1) +
  labs(x = "Temperature (C)", y = "Activity Count", fill = "Finch ID")

Or summarized:

finches_temperature <- finches_temperature %>%
  group_by(date) %>%
  summarize(n = length(time),
            temp = mean(temp))

ggplot(data = finches_temperature, aes(x = date, y = n)) +
  theme_bw() +
  theme(legend.position = "top") +
  geom_point(aes(shape = "Activity")) +
  geom_line(aes(y = temp * 100, colour = "Temperature")) +
  scale_colour_discrete(name = "") +
  scale_shape_discrete(name = "") +
  scale_y_continuous(name = "Activity", sec.axis = sec_axis(~. / 100, name = "Temperature (C)"))

Data gaps

By default, gaps of 2 hours (or 2 days, with a daily scale) will be interpolated over (i.e. they will be filled with values interpolated from either side of the gap), but longer gaps will be skipped and filled with NAs. You can adjust this behaviour with na_gap. Note that as Environment and Climate Change Canada data is downloaded on an hourly scale, it makes no sense to apply na_gap values of less than 1.

In this example, note the larger number of NAs in temp and how it corresponds to the missing variables in the weather dataset:

finches_temperature <- weather_interp(data = finches, weather = kamloops, 
                                      cols = "temp", na_gap = 1)
## temp is missing 4 out of 4368 data, interpolation may be less accurate as a result.
summary(finches_temperature)
##       animal_id         date                 time                     logger_id  
##  0620000513:7624   Min.   :2016-03-01   Min.   :2016-03-01 06:57:42   1500:6370  
##  041868D861:2767   1st Qu.:2016-03-05   1st Qu.:2016-03-05 13:54:13   2100: 968  
##  0620000514:1844   Median :2016-03-09   Median :2016-03-09 16:54:47   2200:2266  
##  06200004F8:1386   Mean   :2016-03-08   Mean   :2016-03-09 07:45:58   2300:3531  
##  041868BED6: 944   3rd Qu.:2016-03-13   3rd Qu.:2016-03-13 08:24:58   2400:1477  
##  06200003BB: 708   Max.   :2016-03-16   Max.   :2016-03-16 16:39:30   2700:2274  
##  (Other)   :1613                                                                 
##    species              age                sex             site_name              lon        
##  Length:16886       Length:16886       Length:16886       Length:16886       Min.   :-120.4  
##  Class :character   Class :character   Class :character   Class :character   1st Qu.:-120.4  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character   Median :-120.4  
##                                                                              Mean   :-120.4  
##                                                                              3rd Qu.:-120.4  
##                                                                              Max.   :-120.4  
##                                                                                              
##       lat             temp        
##  Min.   :50.67   Min.   :-0.2317  
##  1st Qu.:50.67   1st Qu.: 5.0746  
##  Median :50.67   Median : 7.1668  
##  Mean   :50.67   Mean   : 7.4433  
##  3rd Qu.:50.67   3rd Qu.: 9.3458  
##  Max.   :50.67   Max.   :16.3712  
##                  NA's   :84
finches_temperature %>% 
  select(date, time, temp) %>%
  filter(is.na(temp))
## # A tibble: 84 x 3
##    date       time                 temp
##    <date>     <dttm>              <dbl>
##  1 2016-03-10 2016-03-10 16:00:12    NA
##  2 2016-03-10 2016-03-10 16:00:33    NA
##  3 2016-03-10 2016-03-10 16:00:36    NA
##  4 2016-03-10 2016-03-10 16:00:39    NA
##  5 2016-03-10 2016-03-10 16:00:42    NA
##  6 2016-03-10 2016-03-10 16:00:45    NA
##  7 2016-03-10 2016-03-10 16:00:48    NA
##  8 2016-03-10 2016-03-10 16:00:51    NA
##  9 2016-03-10 2016-03-10 16:00:54    NA
## 10 2016-03-10 2016-03-10 16:00:57    NA
## # … with 74 more rows
kamloops %>%
  select(time, temp) %>%
  filter(is.na(temp))
## # A tibble: 4 x 2
##   time                 temp
##   <dttm>              <dbl>
## 1 2016-02-11 19:00:00    NA
## 2 2016-03-08 13:00:00    NA
## 3 2016-03-11 01:00:00    NA
## 4 2016-04-09 00:00:00    NA

Multiple weather columns

We could also add in more than one column at a time:

finches_weather <- weather_interp(data = finches, weather = kamloops,
                                  cols = c("temp", "wind_spd"))
## temp is missing 4 out of 4368 data, interpolation may be less accurate as a result.
## wind_spd is missing 4 out of 4368 data, interpolation may be less accurate as a result.
summary(finches_weather)
##       animal_id         date                 time                     logger_id  
##  0620000513:7624   Min.   :2016-03-01   Min.   :2016-03-01 06:57:42   1500:6370  
##  041868D861:2767   1st Qu.:2016-03-05   1st Qu.:2016-03-05 13:54:13   2100: 968  
##  0620000514:1844   Median :2016-03-09   Median :2016-03-09 16:54:47   2200:2266  
##  06200004F8:1386   Mean   :2016-03-08   Mean   :2016-03-09 07:45:58   2300:3531  
##  041868BED6: 944   3rd Qu.:2016-03-13   3rd Qu.:2016-03-13 08:24:58   2400:1477  
##  06200003BB: 708   Max.   :2016-03-16   Max.   :2016-03-16 16:39:30   2700:2274  
##  (Other)   :1613                                                                 
##    species              age                sex             site_name              lon        
##  Length:16886       Length:16886       Length:16886       Length:16886       Min.   :-120.4  
##  Class :character   Class :character   Class :character   Class :character   1st Qu.:-120.4  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character   Median :-120.4  
##                                                                              Mean   :-120.4  
##                                                                              3rd Qu.:-120.4  
##                                                                              Max.   :-120.4  
##                                                                                              
##       lat             temp            wind_spd     
##  Min.   :50.67   Min.   :-0.2317   Min.   : 1.000  
##  1st Qu.:50.67   1st Qu.: 5.0561   1st Qu.: 7.634  
##  Median :50.67   Median : 7.1651   Median :13.738  
##  Mean   :50.67   Mean   : 7.4349   Mean   :14.443  
##  3rd Qu.:50.67   3rd Qu.: 9.3319   3rd Qu.:19.907  
##  Max.   :50.67   Max.   :16.3712   Max.   :44.939  
## 
glimpse(finches_weather)
## Observations: 16,886
## Variables: 12
## $ animal_id <fct> 041868FF93, 041868FF93, 041868FF93, 06200003BB, 06200003BB, 06200003BB, 0620000…
## $ date      <date> 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-03-01, 2016-0…
## $ time      <dttm> 2016-03-01 06:57:42, 2016-03-01 06:58:41, 2016-03-01 07:07:21, 2016-03-01 07:3…
## $ logger_id <fct> 2300, 2300, 2300, 2400, 2400, 2400, 2400, 2400, 2300, 2300, 2300, 2300, 2300, 2…
## $ species   <chr> "Mountain Chickadee", "Mountain Chickadee", "Mountain Chickadee", "House Finch"…
## $ age       <chr> "AHY", "AHY", "AHY", "SY", "SY", "SY", "SY", "SY", "AHY", "AHY", "AHY", "AHY", …
## $ sex       <chr> "U", "U", "U", "M", "M", "M", "M", "M", "F", "F", "F", "F", "F", "M", "F", "M",…
## $ site_name <chr> "Kamloops, BC", "Kamloops, BC", "Kamloops, BC", "Kamloops, BC", "Kamloops, BC",…
## $ lon       <dbl> -120.3622, -120.3622, -120.3622, -120.3635, -120.3635, -120.3635, -120.3635, -1…
## $ lat       <dbl> 50.66967, 50.66967, 50.66967, 50.66938, 50.66938, 50.66938, 50.66938, 50.66938,…
## $ temp      <dbl> 3.984667, 3.991222, 4.036750, 4.162833, 4.162917, 4.163000, 4.163083, 4.163167,…
## $ wind_spd  <dbl> 22.88500, 22.93417, 22.26500, 19.74333, 19.74167, 19.74000, 19.73833, 19.73667,…
finches_weather <- finches_weather %>%
  group_by(date) %>%
  summarize(n = length(time),
            temp = mean(temp),
            wind_spd = mean(wind_spd))

ggplot(data = finches_weather, aes(x = date, y = n)) +
  theme_bw() +
  theme(legend.position = "top") +
  geom_bar(stat = "identity") +
  geom_line(aes(y = temp * 50, colour = "Temperature"), size = 2) +
  geom_line(aes(y = wind_spd * 50, colour = "Wind Speed"), size = 2) +
  scale_colour_discrete(name = "") +
  scale_y_continuous(name = "Activity Counts", sec.axis = sec_axis(~. / 50, name = "Temperature (C) / Wind Speed (km/h)"))