ClustImpute: K-means clustering with build-in missing data imputation

This clustering algorithm deals with missing data via weights that are imposed on missings and successively increased. See the vignette for details.

Version: 0.1.4
Imports: ClusterR, copula, dplyr, magrittr, rlang
Suggests: psych, ggplot2, knitr, rmarkdown, testthat (≥ 2.1.0), tidyr, Hmisc, tictoc, spelling, corrplot, covr
Published: 2020-05-11
Author: Oliver Pfaffel
Maintainer: Oliver Pfaffel <opfaffel at>
License: GPL-3
NeedsCompilation: no
Language: en-US
Materials: README NEWS
In views: MissingData
CRAN checks: ClustImpute results


Reference manual: ClustImpute.pdf
Vignettes: Example_on_simulated_data
Package source: ClustImpute_0.1.4.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release: ClustImpute_0.1.4.tgz, r-oldrel: ClustImpute_0.1.4.tgz
Old sources: ClustImpute archive

Reverse dependencies:

Reverse suggests: FeatureImpCluster


Please use the canonical form to link to this page.