
Package ‘leastcostpath’
May 15, 2020

Title Modelling Pathways and Movement Potential Within a Landscape

Version 1.3.6

Date 2020-05-13

Maintainer Joseph Lewis <josephlewis1992@gmail.com>

URL josephlewis.github.io

Description Provides functionality to calculate cost surfaces based on slope (e.g. Her-
zog, 2010; Llobera and Sluckin, 2007 <doi:10.1016/j.jtbi.2007.07.020>; París Roche, 2002; To-
bler, 1993), traversing slope (Bell and Lock, 2000), and landscape fea-
tures (Llobera, 2000) to be used when modelling pathways and movement poten-
tial within a landscape (e.g. Llobera, 2015; Verhagen, 2013; White and Bar-
ber, 2012 <doi:10.1016/j.jas.2012.04.017>).

Depends R (>= 3.4.0)

Imports gdistance (>= 1.2-2), raster (>= 2.6-7), rgdal (>= 1.3-3),
rgeos (>= 0.3-28), sp (>= 1.3-1), parallel (>= 3.4-1), pbapply
(>= 1.4-2), methods, stats

License GPL (>= 2)

Encoding UTF-8

LazyData true

Suggests knitr, rmarkdown, spdep (>= 1.1-3)

RoxygenNote 7.1.0

VignetteBuilder knitr

NeedsCompilation no

Author Joseph Lewis [aut, cre]

Repository CRAN

Date/Publication 2020-05-15 05:00:03 UTC

R topics documented:
cost_matrix . 2
create_banded_lcps . 3

1

2 cost_matrix

create_barrier_cs . 4
create_CCP_lcps . 5
create_cost_corridor . 6
create_feature_cs . 7
create_FETE_lcps . 8
create_lcp . 9
create_lcp_density . 11
create_lcp_network . 12
create_slope_cs . 13
create_traversal_cs . 15
validate_lcp . 16

Index 17

cost_matrix Create a cost based nearest neighbour matrix

Description

Creates a cost based nearest neighbour matrix of k length for each provided location. This matrix
can be used in the nb_matrix argument within the create_lcp_network function to calculate Least
Cost Paths between origins and destinations.

Usage

cost_matrix(cost_surface, locations, k)

Arguments

cost_surface TransitionLayer object (gdistance package). Cost surface to be used in calcu-
lating the k nearest neighbour

locations SpatialPoints. Locations to calculate k nearest neighbours from

k numeric number of nearest neighbours to be returned

#’ @return matrix cost-based k nearest neighbour for each location as specified
in the locations argument. The resultant matrix can be used in the nb_matrix
argument within the create_lcp_network function.

Author(s)

Joseph Lewis

create_banded_lcps 3

Examples

r <- raster::raster(nrow=50, ncol=50, xmn=0, xmx=50, ymn=0, ymx=50,
crs='+proj=utm')

r[] <- stats::runif(1:length(r))

slope_cs <- create_slope_cs(r, cost_function = 'tobler')

locs <- sp::spsample(as(raster::extent(r), 'SpatialPolygons'),n=5,'regular')

matrix <- cost_matrix(slope_cs, locs, 2)

lcp_network <- create_lcp_network(slope_cs, locations = locs,
nb_matrix = matrix, cost_distance = FALSE, parallel = FALSE)

create_banded_lcps Calculate Least Cost Paths from random locations within distances

Description

Calculates Least Cost Paths from centre location to random locations within a specified distance
band. This is based on the method proposed by Llobera (2015).

Usage

create_banded_lcps(
cost_surface,
location,
min_distance,
max_distance,
radial_points,
cost_distance = FALSE,
parallel = FALSE

)

Arguments

cost_surface TransitionLayer (gdistance package). Cost surface to be used in Least Cost
Path calculation

location SpatialPoints* (sp package). Location from which the Least Cost Paths are
calculated. Only the first cell is taken into account

min_distance numeric value. minimum distance from centre location

max_distance numeric value. maximum distance from centre location

radial_points numeric value. Number of random locations around centre location within dis-
tances

4 create_barrier_cs

cost_distance logical. if TRUE computes total accumulated cost for each Least Cost Path.
Default is FALSE

parallel logical. if TRUE, the Least Cost Paths will be calculated in parallel. Number
of Parallel socket clusters is total number of cores available minus 1. Default is
FALSE

Value

SpatialLinesDataFrame (sp package). The resultant object contains least cost paths (number of
LCPs is dependent on radial_points argument) calculated from a centre location to random locations
within a specified distance band.

Author(s)

Joseph Lewis

Examples

#r <- raster::raster(nrow=50, ncol=50, xmn=0, xmx=50, ymn=0, ymx=50, crs='+proj=utm')

#r[] <- stats::runif(1:length(r))

#slope_cs <- create_slope_cs(r, cost_function = 'tobler')

#locs <- sp::spsample(as(raster::extent(r), 'SpatialPolygons'),n=1,'random')

#lcp_network <- create_banded_lcps(cost_surface = final_cost_cs, location = locs, min_distance = 20,
#max_distance = 50, radial_points = 10, cost_distance = FALSE, parallel = FALSE)

create_barrier_cs Create Barrier Cost Surface

Description

Creates a cost surface that incorporates barriers that inhibit movement in the landscape.

Usage

create_barrier_cs(raster, barrier, neighbours = 16)

Arguments

raster RasterLayer (raster package). The Resolution, Extent, and Spatial Reference
System of the provided RasterLayer is used when creating the resultant Barrier
Cost Surface

create_CCP_lcps 5

barrier Spatial* (sp package). Areas within the landscape that movement is inhibited.
See details for more

neighbours numeric value. Number of directions used in the Least Cost Path calculation.
See Huber and Church (1985) for methodological considerations when choosing
number of neighbours. Expected values are 4, 8, or 16. Default is 16

Details

The resultant Barrier Cost Surface is produced by assessing which areas of the raster coincide with
the Spatial object as specified in the barrier argument. The areas of raster that coincide with the
Spatial object are given a conductance value of 0, with all other areas given a Conductance value
of 1. The conductance value of 0 ensures that movement is inhibited within these areas. Examples
include rivers, lakes, and taboo areas.

Value

TransitionLayer (gdistance package) numerically expressing the barriers to movement in the
landscape. The resultant TransitionLayer can be incorporated with other TransitionLayer
through Raster calculations

Author(s)

Joseph Lewis

Examples

r <- raster::raster(system.file('external/maungawhau.grd', package = 'gdistance'))
loc1 = cbind(2667670, 6479000)
loc1 = sp::SpatialPoints(loc1)

barrier <- create_barrier_cs(raster = r, barrier = loc1)

create_CCP_lcps Calculate Cumulative Cost Paths from Radial Locations

Description

Calculates Least Cost Paths from radial locations of a specified distance to the centre location. This
is based on the method proposed by Verhagen (2013).

Usage

create_CCP_lcps(
cost_surface,
location,
distance,
radial_points,
cost_distance = FALSE,
parallel = FALSE

)

6 create_cost_corridor

Arguments

cost_surface TransitionLayer (gdistance package). Cost surface to be used in Least Cost
Path calculation

location SpatialPoints (sp package). Location to which the Least Cost Paths are cal-
culated to. Only the first row is taken into account

distance numeric value. Distance from centre location to the radial locations

radial_points numeric value. Number of radial locations around centre location

cost_distance logical. if TRUE computes total accumulated cost for each Least Cost Path.
Default is FALSE

parallel logical. if TRUE, the Least Cost Paths will be calculated in parallel. Number
of Parallel socket clusters is total number of cores available minus 1. Default is
FALSE

Value

SpatialLinesDataFrame (sp package). The resultant object contains least cost paths (number of
LCPs is dependent on radial_points argument) calculated from radial locations to a centre location
within a specified distance.

Author(s)

Joseph Lewis

Examples

r <- raster::raster(nrow=50, ncol=50, xmn=0, xmx=50, ymn=0, ymx=50,
crs='+proj=utm')

r[] <- stats::runif(1:length(r))

slope_cs <- create_slope_cs(r, cost_function = 'tobler')

locs <- sp::spsample(as(raster::extent(r), 'SpatialPolygons'),n=1,'regular')

lcp_network <- create_CCP_lcps(cost_surface = slope_cs, location = locs,
distance = 20, radial_points = 10, cost_distance = FALSE, parallel = FALSE)

create_cost_corridor Create a Cost Corridor

Description

Combines the accumulated cost surfaces from origin-to-destination and destination-to-origin to
identify areas of preferential movement that takes into account both directions of movement.

create_feature_cs 7

Usage

create_cost_corridor(cost_surface, origin, destination, rescale = FALSE)

Arguments

cost_surface TransitionLayer (gdistance package). Cost surface to be used in Cost Corridor
calculation

origin SpatialPoints* (sp package). orgin location from which the Accumulated
Cost is calculated. Only the first cell is taken into account.

destination SpatialPoints* (sp package). destination location from which the Accumu-
lated Cost is calculated. Only the first cell is taken into account

rescale logical. if TRUE raster values scaled to between 0 and 1. Default is FALSE

Value

RasterLayer (raster package). The resultant object is the accumulated cost surface from origin-to-
destination and destination-to-origin and can be used to identify areas of preferential movement in
the landscape.

Author(s)

Joseph Lewis

Examples

r <- raster::raster(system.file('external/maungawhau.grd', package = 'gdistance'))
slope_cs <- create_slope_cs(r, cost_function = 'tobler', neighbours = 16)

loc1 = cbind(2667670, 6479000)
loc1 = sp::SpatialPoints(loc1)

loc2 = cbind(2667800, 6479400)
loc2 = sp::SpatialPoints(loc2)

cost_corridor <- create_cost_corridor(slope_cs, loc1, loc2, rescale = FALSE)

create_feature_cs Create a Landscape Feature cost surface

Description

Creates a Landscape Feature Cost Surface representing the attraction/repulsion of a feature in the
landscape. See Llobera (2000) for theoretical discussion in its application.

Usage

create_feature_cs(raster, locations, x, neighbours = 16)

8 create_FETE_lcps

Arguments

raster RasterLayer (raster package). The Resolution, Extent, and Spatial Reference
System of the provided RasterLayer is used when creating the resultant Barrier
Cost Surface

locations SpatialPoints* (sp package). Location of Features within the landscape

x numeric vector. Values denoting the attraction/repulsion of the landscape fea-
tures within the landscape

neighbours numeric value. Number of directions used in the Least Cost Path calculation.
See Huber and Church (1985) for methodological considerations when choosing
number of neighbours. Expected values are 4, 8, or 16. Default is 16

Value

TransitionLayer (gdistance package) numerically expressing the attraction/repulsion of a feature
in the landscape. The resultant TransitionLayer can be incorporated with other TransitionLayer
through Raster calculations.

Author(s)

Joseph Lewis

Examples

r <- raster::raster(system.file('external/maungawhau.grd', package = 'gdistance'))
loc1 = cbind(2667670, 6479000)
loc1 = sp::SpatialPoints(loc1)

num <- seq(200, 1, length.out = 20)

feature <- create_feature_cs(raster = r, locations = loc1, x = num)

create_FETE_lcps Calculate least cost paths from each location to all other locations.

Description

Calculates least cost paths from each location to all other locations (i.e. From Everywhere To
Everywhere (FETE)). This is based on the method proposed by White and Barber (2012).

Usage

create_FETE_lcps(
cost_surface,
locations,
cost_distance = FALSE,
parallel = FALSE

)

create_lcp 9

Arguments

cost_surface TransitionLayer (gdistance package). Cost surface to be used in Least Cost
Path calculation

locations SpatialPoints* (sp package). Locations to calculate Least Cost Paths from
and to

cost_distance logical. if TRUE computes total accumulated cost for each Least Cost Path.
Default is FALSE

parallel logical. if TRUE the Least Cost Paths will be calculated in parallel. Number
of Parallel socket clusters is total number of cores available minus 1. Default is
FALSE

Value

SpatialLinesDataFrame (sp package). The resultant object contains least cost paths calculated
from each location to all other locations

Author(s)

Joseph Lewis

Examples

r <- raster::raster(nrow=50, ncol=50, xmn=0, xmx=50, ymn=0, ymx=50,
crs='+proj=utm')

r[] <- stats::runif(1:length(r))

slope_cs <- create_slope_cs(r, cost_function = 'tobler')

locs <- sp::spsample(as(raster::extent(r), 'SpatialPolygons'),n=5,'regular')

lcp_network <- create_FETE_lcps(cost_surface = slope_cs, locations = locs,
cost_distance = FALSE, parallel = FALSE)

create_lcp Calculate Least Cost Path from Origin to Destination

Description

Calculates a Least Cost Path from an origin location to a destination location. Applies Dijkstra’s
algorithm.

10 create_lcp

Usage

create_lcp(
cost_surface,
origin,
destination,
directional = FALSE,
cost_distance = FALSE

)

Arguments

cost_surface TransitionLayer (gdistance package). Cost surface to be used in Least Cost
Path calculation

origin SpatialPoints* (sp package) location from which the Least Cost Path is cal-
culated. Only the first row is taken into account

destination SpatialPoints* (sp package) location to which the Least Cost Path is calcu-
lated. Only the first row is taken into account

directional logical. if TRUE Least Cost Path calculated from origin to destination only. If
FALSE Least Cost Path calculated from origin to destination and destination to
origin. Default is FALSE

cost_distance logical. if TRUE computes total accumulated cost for each Least Cost Path.
Default is FALSE

Value

SpatialLinesDataFrame (sp package) of length 1 if directional argument is TRUE or 2 if direc-
tional argument is FALSE. The resultant object is the shortest route (i.e. least cost) between origin
and destination using the supplied TransitionLayer.

Author(s)

Joseph Lewis

Examples

r <- raster::raster(system.file('external/maungawhau.grd', package = 'gdistance'))

slope_cs <- create_slope_cs(r, cost_function = 'tobler')

traverse_cs <- create_traversal_cs(r, neighbours = 16)

final_cost_cs <- slope_cs * traverse_cs

loc1 = cbind(2667670, 6479000)
loc1 = sp::SpatialPoints(loc1)

loc2 = cbind(2667800, 6479400)
loc2 = sp::SpatialPoints(loc2)

create_lcp_density 11

lcps <- create_lcp(cost_surface = final_cost_cs, origin = loc1,
destination = loc2, directional = FALSE, cost_distance = FALSE)

create_lcp_density Creates a cumulative Least Cost Path Raster

Description

Cumulatively combines Least Cost Paths in order to identify routes of preferential movement within
the landscape.

Usage

create_lcp_density(lcps, raster, rescale = FALSE)

Arguments

lcps SpatialLines* (sp package). Least Cost Paths

raster RasterLayer (raster package). This is used to derive the resolution, extent, and
spatial reference system to be used when calculating the cumulative least cost
path raster

rescale logical. if TRUE raster values scaled to between 0 and 1. Default is FALSE

Value

RasterLayer (raster package). The resultant object is the cumulatively combined Least Cost Paths.
This identifies routes of preferential movement within the landscape.

Author(s)

Joseph Lewis

Examples

r <- raster::raster(nrow=50, ncol=50, xmn=0, xmx=50, ymn=0, ymx=50, crs='+proj=utm')

r[] <- stats::runif(1:length(r))

slope_cs <- create_slope_cs(r, cost_function = 'tobler')

x1 <- c(seq(1,10), seq(11,25), seq(26,30))
y1 <- c(seq(1,10), seq(11,25), seq(26,30))
line1 <- sp::SpatialLines(list(sp::Lines(sp::Line(cbind(x1,y1)), ID='a')))

x2 <- c(seq(1,10), seq(11,25), seq(26, 30))
y2 <- c(seq(1,10), seq(11,25), rep(25, 5))
line2 <- sp::SpatialLines(list(sp::Lines(sp::Line(cbind(x2,y2)), ID='b')))

12 create_lcp_network

lcp_network <- rbind(line1, line2)

cumulative_lcps <- create_lcp_density(lcps = lcp_network, raster = r, rescale = FALSE)

create_lcp_network Calculate least cost paths from specified origins and destinations

Description

Calculates least cost paths from each origins and destinations as specified in the neighbour matrix.

Usage

create_lcp_network(
cost_surface,
locations,
nb_matrix = NULL,
cost_distance = FALSE,
parallel = FALSE

)

Arguments

cost_surface TransitionLayer (gdistance package). Cost surface to be used in Least Cost
Path calculation.

locations SpatialPoints* (sp package). Potential locations to calculate Least Cost Paths
from and to.

nb_matrix matrix. 2 column matrix representing the index of origins and destinations to
calculate least cost paths between.

cost_distance logical. if TRUE computes total accumulated cost for each Least Cost Path.
Default is FALSE.

parallel logical. if TRUE, the Least Cost Paths will be calculated in parallel. Number
of Parallel socket clusters is total number of cores available minus 1. Default is
FALSE.

Value

SpatialLinesDataFrame (sp package). The resultant object contains least cost paths calculated
from each origins and destinations as specified in the neighbour matrix.

Author(s)

Joseph Lewis

create_slope_cs 13

Examples

r <- raster::raster(nrow=50, ncol=50, xmn=0, xmx=50, ymn=0, ymx=50,
crs='+proj=utm')

r[] <- stats::runif(1:length(r))

slope_cs <- create_slope_cs(r, cost_function = 'tobler')

locs <- sp::spsample(as(raster::extent(r), 'SpatialPolygons'),n=5,'regular')

lcp_network <- create_lcp_network(slope_cs, locations = locs,
nb_matrix = cbind(c(1, 4, 2, 1), c(2, 2, 4, 3)), cost_distance = FALSE, parallel = FALSE)

create_slope_cs Create a slope based cost surface

Description

Creates a cost surface based on the difficulty of moving up/down slope. This function provides the
choice of multiple isotropic and anisotropic cost functions that estimate human movement across a
landscape. Maximum percentage slope possible for traversal can also be suppplied.

Usage

create_slope_cs(
dem,
cost_function = "tobler",
neighbours = 16,
crit_slope = 12,
max_slope = NULL

)

Arguments

dem RasterLayer (raster package). Digital Elevation Model

cost_function character. Cost Function used in the Least Cost Path calculation. Imple-
mented cost functions include ’tobler’, ’tobler offpath’, ’irmischer-clarke male’,
’irmischer-clarke offpath male’, ’irmischer-clarke female’, ’irmischer-clarke off-
path female’, ’modified tobler’, ’wheeled transport’, ’herzog’, ’llobera-sluckin’,
’all’. Default is ’tobler’. See Details for more information

neighbours numeric value. Number of directions used in the Least Cost Path calculation.
See Huber and Church (1985) for methodological considerations when choosing
number of neighbours. Expected values are 4, 8, or 16. Default is 16

14 create_slope_cs

crit_slope numeric value. Critical Slope (in percentage) is ’the transition where switch-
backs become more effective than direct uphill or downhill paths’. Cost of
climbing the critical slope is twice as high as those for moving on flat terrain
and is used for estimating the cost of using wheeled vehicles. Default value is
12, which is the postulated maximum gradient traversable by ancient transport
(Verhagen and Jeneson, 2012). Critical slope only used in ’wheeled transport’
cost function

max_slope numeric value. Maximum percentage slope that is traversable. Slope values
that are greater than the specified max_slope are given a conductivity value of
0. Default is NULL

Details

Tobler’s ’Hiking Function’ is the most widely used cost function when approximating the difficulty
of moving across a landscape (Gorenflo and Gale, 1990; Wheatley and Gillings, 2001). The function
assess the time necessary to traverse a surface and takes into account up-slope and down-slope
(Kantner, 2004; Tobler, 1993).

Tobler’s offpath Hiking Function reduces the speed of the Tobler’s Hiking Function by 0.6 to take
into account walking off-path (Tobler, 1993)

The Irmischer and Clark functions were modelled from speed estimates of United States Military
Academy (USMA) cadets while they navigated on foot over hilly, wooded terrain as part of their
summer training in map and compass navigation.

The Modified Hiking cost function combines MIDE (París Roche, 2002), a method to calculate
walking hours for an average hiker with a light load (Márquez-Pérez et al. 2017), and Tobler’s
’Hiking Function’ (Tobler, 1993). The Modified Hiking Function benefits from the precision of the
MIDE rule and the continuity of Tobler’s Hiking Function (Márquez-Pérez et al. 2017).

Herzog (2013), based on the cost function provided by Llobera and Sluckin (2007), has provided a
cost function to approximate the cost for wheeled transport. The cost function is symmetric and is
most applicable for use when the same route was taken in both directions.

Herzog’s (2010) Sixth-degree polynomial cost function approximates the energy expenditure values
found in Minetti et al. (2002) but eliminates the problem of unrealistic negative energy expenditure
values for steep downhill slopes.

Llobera and Sluckin (2007) cost function approximates the metabolic energy expenditure in KJ/(m*kg)
when moving across a landscape.

Value

TransitionLayer (gdistance package) numerically expressing the difficulty of moving up/down
slope based on the cost function provided in the cost_function argument. list of TransitionLayer
if cost_function = ’all’

Author(s)

Joseph Lewis

create_traversal_cs 15

Examples

r <- raster::raster(system.file('external/maungawhau.grd', package = 'gdistance'))
slope_cs <- create_slope_cs(r, cost_function = 'tobler', neighbours = 16, max_slope = NULL)

create_traversal_cs Create a Traversal across Slope Cost Surface

Description

Creates a cost surface based on the difficulty of traversing across slope. Difficulty of traversal is
based on the figure given in Bell and Lock (2000). Traversal across slope accounts for movement
directly perpendicular across slope being easier than movement diagonally up/down slope.

Usage

create_traversal_cs(dem, neighbours = 16)

Arguments

dem RasterLayer (raster package). Digital Elevation Model

neighbours numeric value. Number of directions used in the Least Cost Path calculation.
See Huber and Church (1985) for methodological considerations when choosing
number of neighbours. Expected values are 4, 8, or 16. Default is 16

Value

TransitionLayer (gdistance package) numerically expressing the difficulty of moving across slope
based on figure given in Bell and Lock (2000). The traversal_cs TransitionLayer should be
multiplied by the create_slope_cs TransitionLayer, resulting in a TransitionLayer that takes
into account movement across slope in all directions

Author(s)

Joseph Lewis

Examples

r <- raster::raster(system.file('external/maungawhau.grd', package = 'gdistance'))
traversal_cs <- create_traversal_cs(r, neighbours = 16)

16 validate_lcp

validate_lcp Calculate accuracy of Least Cost Path

Description

Calculates the accuracy of a Least Cost Path using the buffer method proposed by Goodchild and
Hunter (1997).

Usage

validate_lcp(lcp, comparison, buffers = c(50, 100, 250, 500, 1000))

Arguments

lcp SpatialLines* (sp package). Least Cost Path to assess the accuracy of. Ex-
pects object of class SpatialLines/SpatialLinesDataFrame

comparison SpatialLines* to validate the Least Cost Path against.

buffers numeric vector of buffer distances to assess. Default values are c(50, 100, 250,
500, 1000).

Value

data.frame (base package). The resultant object identifies the percentage of the lcp within x
distance (as supplied in the buffers argument) from the provided comparison object.

Author(s)

Joseph Lewis

Examples

x1 <- c(1,5,4,8)
y1 <- c(1,3,4,7)
line1 <- sp::SpatialLines(list(sp::Lines(sp::Line(cbind(x1,y1)), ID='a')))
x2 <- c(1,5,5,8)
y2 <- c(1,4,6,7)
line2 <- sp::SpatialLines(list(sp::Lines(sp::Line(cbind(x2,y2)), ID='b')))

val_lcp <- validate_lcp(lcp = line1, comparison = line2, buffers = c(0.1, 0.2, 0.5, 1))

Index

cost_matrix, 2
create_banded_lcps, 3
create_barrier_cs, 4
create_CCP_lcps, 5
create_cost_corridor, 6
create_feature_cs, 7
create_FETE_lcps, 8
create_lcp, 9
create_lcp_density, 11
create_lcp_network, 12
create_slope_cs, 13
create_traversal_cs, 15

validate_lcp, 16

17

	cost_matrix
	create_banded_lcps
	create_barrier_cs
	create_CCP_lcps
	create_cost_corridor
	create_feature_cs
	create_FETE_lcps
	create_lcp
	create_lcp_density
	create_lcp_network
	create_slope_cs
	create_traversal_cs
	validate_lcp
	Index

