SelvarMix: Regularization for Variable Selection in Model-Based Clustering and Discriminant Analysis

Performs a regularization approach to variable selection in the model-based clustering and classification frameworks. First, the variables are arranged in order with a lasso-like procedure. Second, the method of Maugis, Celeux, and Martin-Magniette (2009, 2011) <doi:10.1016/j.csda.2009.04.013>, <doi:10.1016/j.jmva.2011.05.004> is adapted to define the role of variables in the two frameworks.

Version: 1.2.1
Depends: R (≥ 3.1.0), glasso, Rmixmod, parallel, base
Imports: Rcpp (≥ 0.11.1), methods
LinkingTo: Rcpp, RcppArmadillo
Published: 2017-10-16
Author: Mohammed Sedki, Gilles Celeux, Cathy Maugis-Rabusseau
Maintainer: Mohammed Sedki <mohammed.sedki at>
License: GPL (≥ 3)
NeedsCompilation: yes
CRAN checks: SelvarMix results


Reference manual: SelvarMix.pdf
Package source: SelvarMix_1.2.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release: SelvarMix_1.2.1.tgz, r-oldrel: SelvarMix_1.2.1.tgz
Old sources: SelvarMix archive


Please use the canonical form to link to this page.