bliss: Bayesian Functional Linear Regression with Sparse Step Functions

A method for the Bayesian functional linear regression model (scalar-on-function), including two estimators of the coefficient function and an estimator of its support. A representation of the posterior distribution is also available. Grollemund P-M., Abraham C., Baragatti M., Pudlo P. (2019) <doi:10.1214/18-BA1095>.

Version: 1.0.1
Depends: R (≥ 3.3.0)
Imports: Rcpp, MASS, RColorBrewer, ggplot2, rockchalk
LinkingTo: Rcpp, RcppArmadillo
Suggests: rmarkdown, knitr
Published: 2020-07-13
Author: Paul-Marie Grollemund [aut, cre], Isabelle Sanchez [ctr], Meili Baragatti [ctr]
Maintainer: Paul-Marie Grollemund <paul.marie.grollemund at>
License: GPL-3
NeedsCompilation: yes
Citation: bliss citation info
Materials: README
CRAN checks: bliss results


Reference manual: bliss.pdf
Vignettes: Introduction to BliSS method
Package source: bliss_1.0.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release: bliss_1.0.1.tgz, r-oldrel: bliss_1.0.1.tgz
Old sources: bliss archive


Please use the canonical form to link to this page.