metasens: Advanced Statistical Methods to Model and Adjust for Bias in Meta-Analysis

The following methods are implemented to evaluate how sensitive the results of a meta-analysis are to potential bias in meta-analysis and to support Schwarzer et al. (2015) <doi:10.1007/978-3-319-21416-0>, Chapter 5 'Small-Study Effects in Meta-Analysis': - Copas selection model described in Copas & Shi (2001) <doi:10.1177/096228020101000402>; - limit meta-analysis by Rücker et al. (2011) <doi:10.1093/biostatistics/kxq046>; - upper bound for outcome reporting bias by Copas & Jackson (2004) <doi:10.1111/j.0006-341X.2004.00161.x>; - imputation methods for missing binary data by Gamble & Hollis (2005) <doi:10.1016/j.jclinepi.2004.09.013> and Higgins et al. (2008) <doi:10.1177/1740774508091600>.

Version: 0.4-1
Depends: meta (≥ 4.9-5)
Published: 2020-07-02
Author: Guido Schwarzer ORCID iD [cre, aut], James R. Carpenter ORCID iD [aut], Gerta Rücker ORCID iD [aut]
Maintainer: Guido Schwarzer <sc at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Materials: NEWS
In views: ClinicalTrials, MetaAnalysis, MissingData
CRAN checks: metasens results


Reference manual: metasens.pdf
Package source: metasens_0.4-1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release: metasens_0.4-1.tgz, r-oldrel: metasens_0.4-1.tgz
Old sources: metasens archive


Please use the canonical form to link to this page.