missMDA: Handling Missing Values with Multivariate Data Analysis

Imputation of incomplete continuous or categorical datasets; Missing values are imputed with a principal component analysis (PCA), a multiple correspondence analysis (MCA) model or a multiple factor analysis (MFA) model; Perform multiple imputation with and in PCA or MCA.

Version: 1.17
Depends: R (≥ 3.3.0)
Imports: FactoMineR (≥ 2.3), ggplot2, graphics, grDevices, mice, mvtnorm, stats, utils, doParallel, parallel, foreach
Suggests: knitr
Published: 2020-05-19
Author: Francois Husson, Julie Josse
Maintainer: Francois Husson <husson at agrocampus-ouest.fr>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: http://factominer.free.fr/missMDA/index.html
NeedsCompilation: no
Citation: missMDA citation info
Materials: README
In views: MissingData, OfficialStatistics, Psychometrics
CRAN checks: missMDA results


Reference manual: missMDA.pdf
Vignettes: MulitpleImputation
Package source: missMDA_1.17.tar.gz
Windows binaries: r-devel: missMDA_1.17.zip, r-release: missMDA_1.17.zip, r-oldrel: missMDA_1.17.zip
macOS binaries: r-release: missMDA_1.17.tgz, r-oldrel: missMDA_1.17.tgz
Old sources: missMDA archive

Reverse dependencies:

Reverse depends: imp4p
Reverse imports: Factoshiny, INSPIRE, smartdata
Reverse suggests: denoiseR, FactoMineR


Please use the canonical form https://CRAN.R-project.org/package=missMDA to link to this page.