sommer: Solving Mixed Model Equations in R

Structural multivariate-univariate linear mixed model solver for estimation of multiple random effects and unknown variance-covariance structures (i.e. heterogeneous and unstructured variance models) (Covarrubias-Pazaran, 2016 <doi:10.1371/journal.pone.0156744>; Maier et al., 2015 <doi:10.1016/j.ajhg.2014.12.006>). ML/REML estimates can be obtained using the Direct-Inversion Newton-Raphson and Direct-Inversion Average Information algorithms. Designed for genomic prediction and genome wide association studies (GWAS), particularly focused in the p > n problem (more coefficients than observations) and dense known covariance structures for levels of random effects. Spatial models can also be fitted using i.e. the two-dimensional spline functionality available in sommer.

Version: 4.1.0
Depends: R (≥ 2.10), Matrix (≥ 1.1.1), methods, stats, MASS, lattice, crayon
Imports: Rcpp (≥ 0.12.19)
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, plyr, parallel, orthopolynom
Published: 2020-06-16
Author: Giovanny Covarrubias-Pazaran
Maintainer: Giovanny Covarrubias-Pazaran <cova_ruber at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
Citation: sommer citation info
Materials: README ChangeLog
CRAN checks: sommer results


Reference manual: sommer.pdf
Vignettes: FAQ for the sommer package
GxE models in sommer
Quantitative genetics using the sommer package
Moving to newer versions of sommer
Quick start for the sommer package
Special topics in QG
Package source: sommer_4.1.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release: sommer_4.1.0.tgz, r-oldrel: sommer_4.1.0.tgz
Old sources: sommer archive

Reverse dependencies:

Reverse imports: mlmm.gwas, pcgen, statgenGWAS
Reverse suggests: MoBPS
Reverse enhances: emmeans


Please use the canonical form to link to this page.