EGAnet: Exploratory Graph Analysis - A Framework for Estimating the Number of Dimensions in Multivariate Data Using Network Psychometrics

An implementation of the Exploratory Graph Analysis (EGA) framework for dimensionality assessment. EGA is part of a new area called network psychometrics that focuses on the estimation of undirected network models in psychological datasets. EGA estimates the number of dimensions or factors using graphical lasso or Triangulated Maximally Filtered Graph (TMFG) and a weighted network community analysis. A bootstrap method for verifying the stability of the estimation is also available. The fit of the structure suggested by EGA can be verified using confirmatory factor analysis and a direct way to convert the EGA structure to a confirmatory factor model is also implemented. Documentation and examples are available. Golino, H. F., & Epskamp, S. (2017) <doi:10.1371/journal.pone.0174035>. Golino, H. F., & Demetriou, A. (2017) <doi:10.1016/j.intell.2017.02.007> Golino, H., Shi, D., Garrido, L. E., Christensen, A. P., Nieto, M. D., Sadana, R., & Thiyagarajan, J. A. (2018) <doi:10.31234/>. Christensen, A. P. & Golino, H.F. (2019) <doi:10.31234/>.

Version: 0.9.6
Depends: R (≥ 3.5.0)
Imports: qgraph (≥ 1.4.1), semPlot (≥ 1.0.1), igraph (≥ 1.0.1), lavaan (≥ 0.5-22), NetworkToolbox (≥ 1.1.2), glasso (≥ 1.10), stats, Matrix (≥ 1.2), dplyr (≥ 0.7.8), plotly
Suggests: knitr, rmarkdown, kableExtra, psych, psychTools, ggpubr, ggplot2, tidyselect, mvtnorm (≥ 1.0.8), corpcor (≥ 1.6.9), plyr (≥ 1.8.4), matrixcalc (≥ 1.0-3), pbapply, OpenMx, wTO, MASS, fdrtool, fitdistrplus
Published: 2020-07-13
Author: Hudson Golino ORCID iD [aut, cre], Alexander Christensen ORCID iD [aut], Robert Moulder ORCID iD [ctb]
Maintainer: Hudson Golino <hfg9s at>
License: GPL (≥ 3.0)
NeedsCompilation: no
Citation: EGAnet citation info
Materials: NEWS
In views: Psychometrics
CRAN checks: EGAnet results


Reference manual: EGAnet.pdf
Vignettes: Network Scores
Redundant Nodes
Package source: EGAnet_0.9.6.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release: EGAnet_0.9.6.tgz, r-oldrel: EGAnet_0.9.6.tgz
Old sources: EGAnet archive

Reverse dependencies:

Reverse suggests: parameters


Please use the canonical form to link to this page.