torch: Tensors and Neural Networks with 'GPU' Acceleration

Provides functionality to define and train neural networks similar to 'PyTorch' by Paszke et al (2019) <arXiv:1912.01703> but written entirely in R using the 'libtorch' library. Also supports low-level tensor operations and 'GPU' acceleration.

Version: 0.1.0
Imports: Rcpp, R6, withr, rlang, methods, utils, stats, bit64, magrittr
LinkingTo: Rcpp
Suggests: testthat (≥ 2.1.0), covr, knitr, rmarkdown, glue, palmerpenguins
Published: 2020-09-28
Author: Daniel Falbel [aut, cre, cph], Javier Luraschi [aut, cph], Dmitriy Selivanov [ctb], Athos Damiani [ctb], RStudio [cph]
Maintainer: Daniel Falbel <daniel at rstudio.com>
BugReports: https://github.com/mlverse/torch/issues
License: MIT + file LICENSE
URL: https://torch.mlverse.org/docs, https://github.com/mlverse/torch
NeedsCompilation: yes
SystemRequirements: C++11, LibTorch (https://pytorch.org/)
Materials: README NEWS
CRAN checks: torch results

Downloads:

Reference manual: torch.pdf
Vignettes: Extending Autograd
Indexing tensors
Loading data
Serialization
Creating tensors
Using autograd
Package source: torch_0.1.0.tar.gz
Windows binaries: r-devel: torch_0.1.0.zip, r-release: torch_0.1.0.zip, r-oldrel: torch_0.1.0.zip
macOS binaries: r-release: torch_0.1.0.tgz, r-oldrel: torch_0.1.0.tgz
Old sources: torch archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=torch to link to this page.