APML: An Approach for Machine-Learning Modelling

We include 1) data cleaning including variable scaling, missing values and unbalanced variables identification and removing, and strategies for variable balance improving; 2) modeling based on random forest and gradient boosted model including feature selection, model training, cross-validation and external testing. For more information, please see H2O.ai (Oct. 2016). R Interface for H2O, R package version <https://github.com/h2oai/h2o-3>; Zhang W (2016). <doi:10.1016/j.scitotenv.2016.02.023>.

Version: 0.0.1
Imports: tidyverse, h2o, DMwR, dummies, dplyr, ggplot2, pROC, survival
Published: 2020-10-24
Author: Xinlei Deng [aut, cre, cph], Wangjian Zhang [aut], Shao Lin [aut]
Maintainer: Xinlei Deng <xdeng3 at albany.edu>
License: GPL-3
NeedsCompilation: no
CRAN checks: APML results


Reference manual: APML.pdf
Package source: APML_0.0.1.tar.gz
Windows binaries: r-devel: APML_0.0.1.zip, r-release: APML_0.0.1.zip, r-oldrel: APML_0.0.1.zip
macOS binaries: r-release: APML_0.0.1.tgz, r-oldrel: APML_0.0.1.tgz


Please use the canonical form https://CRAN.R-project.org/package=APML to link to this page.