
Package ‘WeightIt’
August 27, 2020

Type Package

Title Weighting for Covariate Balance in Observational Studies

Version 0.10.2

Description Generates weights to form equivalent groups in observational studies with point or longi-
tudinal treatments by easing and extending the functionality of the R packages 'twang' for gener-
alized boosted modeling (McCaffrey, Ridgeway & Morral, 2004) <doi:10.1037/1082-
989X.9.4.403>, 'CBPS' for covariate balancing propensity score weight-
ing (Imai & Ratkovic, 2014) <doi:10.1111/rssb.12027>, 'ebal' for entropy balancing (Hain-
mueller, 2012) <doi:10.1093/pan/mpr025>, 'optweight' for optimization-based weights (Zu-
bizarreta, 2015) <doi:10.1080/01621459.2015.1023805>, 'ATE' for empirical balancing calibra-
tion weighting (Chan, Yam, & Zhang, 2016) <doi:10.1111/rssb.12129>, and 'Super-
Learner' for stacked machine learning-based propensity scores (Pirracchio, Pe-
tersen, & van der Laan, 2015) <doi:10.1093/aje/kwu253>. Also allows for assess-
ment of weights and checking of covariate balance by interfacing directly with 'cobalt'.

Depends R (>= 3.3.0)

Imports cobalt (>= 4.2.2), ggplot2 (>= 3.0.0), crayon, backports (>=
1.1.8)

Suggests twang (>= 1.5), CBPS (>= 0.18), ebal (>= 0.1-6), ATE (>=
0.2.0), optweight (>= 0.2.4), SuperLearner (>= 2.0-25), mlogit
(>= 1.1.0), mnlogit (>= 1.2.6), dfidx, MNP (>= 3.1-0), brglm2
(>= 0.5.2), osqp (>= 0.6.0.3), survey, jtools (>= 2.0.2), boot,
MASS, gbm (>= 2.1.3), misaem (>= 1.0.0), knitr, rmarkdown

License GPL (>= 2)

Encoding UTF-8

LazyData true

URL https://ngreifer.github.io/WeightIt/,

https://github.com/ngreifer/WeightIt

BugReports https://github.com/ngreifer/WeightIt/issues

VignetteBuilder knitr

NeedsCompilation no

Author Noah Greifer [aut, cre] (<https://orcid.org/0000-0003-3067-7154>)

1

https://ngreifer.github.io/WeightIt/
https://github.com/ngreifer/WeightIt
https://github.com/ngreifer/WeightIt/issues


2 as.weightit

Maintainer Noah Greifer <noah.greifer@gmail.com>

Repository CRAN

Date/Publication 2020-08-27 05:10:33 UTC

R topics documented:

as.weightit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
ESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
get_w_from_ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
make_full_rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
method_cbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
method_ebal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
method_ebcw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
method_energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
method_gbm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
method_npcbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
method_optweight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
method_ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
method_super . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
method_twang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
method_user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
ps.cont . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
sbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
stop.method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
summary.weightit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
weightit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
weightitMSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Index 64

as.weightit Create a weightit object manually

Description

This function allows users to get the benefits of a weightit object when using weights not esti-
mated with weightit() or weightitMSM(). These benefits include diagnostics, plots, and direct
compatibility with cobalt for assessing balance.
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Usage

as.weightit(...)

## Default S3 method:
as.weightit(weights,

treat,
covs = NULL,
estimand = NULL,
s.weights = NULL,
ps = NULL,
...)

as.weightitMSM(...)

## Default S3 method:
as.weightitMSM(weights,

treat.list,
covs.list = NULL,
estimand = NULL,
s.weights = NULL,
ps.list = NULL,
...)

Arguments

weights required; a numeric vector of weights, one for each unit.

treat required; a vector of treatment statuses, one for each unit.

covs an optional data.frame of covariates. For using WeightIt functions, this is not
necessary, but for use with cobalt it is.

estimand an optional character of length 1 giving the estimand. The text is not checked.

s.weights an optional numeric vector of sampling weights, one for each unit.

ps an optional numeric vector of propensity scores, one for each unit.

treat.list a list of treatment statuses at each time point..

covs.list an optional list of data.frames of covariates of covariates at each time point.
For using WeightIt functions, this is not necessary, but for use with cobalt it is.

ps.list an optional list of numeric vectors of propensity scores at each time point.

... additional arguments. These must be named. They will be included in the output
object.

Value

An object of class weightit (for as.weightit) or weightitMSM (for as.weightitMSM).

Author(s)

Noah Greifer
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Examples

treat <- rbinom(500, 1, .3)
weights <- rchisq(500, df = 2)
W <- as.weightit(weights= weights, treat = treat,

estimand = "ATE")
summary(W)

ESS Compute effective sample size of weighted sample

Description

Computes the effective sample size (ESS) of a weighted sample, which represents the size of an
unweighted sample with approximately the same amount of precision as the weighted sample under
consideration.

Usage

ESS(w)

Arguments

w a vector of weights

Details

The ESS is calculated as sum(w)^2/sum(w^2).

References

McCaffrey, D. F., Ridgeway, G., & Morral, A. R. (2004). Propensity Score Estimation With Boosted
Regression for Evaluating Causal Effects in Observational Studies. Psychological Methods, 9(4),
403–425. doi: 10.1037/1082989X.9.4.403

Shook-Sa, B. E., & Hudgens, M. G. (2020). Power and Sample Size for Marginal Structural Models.
ArXiv:2003.05979 [Stat]. https://arxiv.org/abs/2003.05979

See Also

summary.weightit

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,

https://doi.org/10.1037/1082-989X.9.4.403
https://arxiv.org/abs/2003.05979
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method = "ps", estimand = "ATE"))
summary(W1)
ESS(W1$weights[W1$treat == 0])
ESS(W1$weights[W1$treat == 1])

get_w_from_ps Compute weights from propensity scores

Description

Given a vector or matrix of propensity scores, outputs a vector of weights that target the provided
estimand.

Usage

get_w_from_ps(ps,
treat,
estimand = "ATE",
focal = NULL,
treated = NULL,
subclass = NULL,
stabilize = FALSE)

Arguments

ps A vector, matrix, or data frame of propensity scores. See Details.

treat A vector of treatment status for each individual. See Details.

estimand The desired estimand that the weights should target. Current options include
"ATE" (average treatment effect), "ATT" (average treatment effect on the treated),
"ATC" (average treatment effect on the control), "ATO" (average treatment ef-
fect in the overlap), "ATM" (average treatment effect in the matched sample),
and "ATOS" (average treatment effect in the optimal subset).

focal When the estimand is the ATT or ATC, which group should be consider the
(focal) "treated" or "control" group, respectively. If not NULL and estimand is
not "ATT" or "ATC", estimand will automatically be set to "ATT".

treated When treatment is binary, the value of treat that is considered the "treated"
group (i.e., the group for which the propensity scores are the probability of being
in). If NULL, get_w_from_ps will attempt to figure it out on its own using some
heuristics. This really only matters when treat has values other than 0 and 1
and when ps is given as a vector or an unnamed single-column matrix or data
frame.

subclass numeric; the number of subclasses to use when computing weights using marginal
mean weighting through stratification (also known as fine stratification). If NULL,
standard inverse probability weights (and their extensions) will be computed; if
a number greater than 1, subclasses will be formed and weights will be com-
puted based on subclass membership. estimand must be ATE, ATT, or ATC if
subclass is non-NULL. See Details.
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stabilize logical; whether to compute stabilized weights or not. This simply involves
multiplying each unit’s weight by the proportion of units in their treatment
group. For saturated outcome models and in balance checking, this won’t make
a difference; otherwise, this can improve performance.

Details

get_w_from_ps applies the formula for computing weights from propensity scores for the desired
estimand. See the References section for information on these estimands and the formulas.

ps can be entered a variety of ways. For binary treatments, when ps is entered as a vector or
unnamed single-column matrix or data frame, get_w_from_ps has to know which value of treat
corresponds to the "treated" group. For 0/1 variables, 1 will be considered treated. For other types
of variables, get_w_from_ps will try to figure it out using heuristics, but it’s safer to supply an
argument to treated. When estimand is "ATT" or "ATC", supplying a value to focal is sufficient
(for ATT, focal is the treated group, and for ATC, focal is the control group). When entered as a
matrix or data frame, the columns must be named with the levels of the treatment, and it is assumed
that each column corresponds to the probability of being in that treatment group. This is the safest
way to supply ps unless treat is a 0/1 variable.

For multi-category treatments, ps can be entered as a vector or a matrix or data frame. When entered
as a vector, it is assumed the value corresponds to the probability of being in the treatment actually
received; this is only possible when the estimand is "ATE". Otherwise, ps must be entered as a
named matrix or data frame as described above for binary treatments. When the estimand is "ATT"
or "ATC", a value for focal must be specified.

When subclass is not NULL, marginal mean weighting through stratification (MMWS) weights are
computed. The implementation differs slightly from that described in Hong (2010, 2012). First,
subclasses are formed by finding the quantiles of the propensity scores in the target group (for the
ATE, all units; for the ATT or ATC, just the units in the focal group). Any subclasses lacking
members of a treatment group will be filled in with them from neighboring subclasses so each
subclass will always have at least one member of each treatment group. A new subclass-propensity
score matrix is formed, where each unit’s subclass-propensity score for each treatment value is
computed as the proportion of units with that treatment value in the unit’s subclass. For example,
if a subclass had 10 treated units and 90 control units in it, the subclass-propensity score for being
treated would be .1 and the subclass-propensity score for being control would be .9 for all units in
the subclass. For multi-category treatments, the propensity scores for each treatment are stratified
separately as described in Hong (2012); for binary treatments, only one set of propensity scores are
stratified and the subclass-propensity scores for the other treatment are computed as the complement
of the propensity scores for the stratified treatment. After the subclass-propensity scores have been
computed, the standard propensity score weighting formulas are used to compute the unstabilized
MMWS weights. To estimate MMWS weights equivalent to those described in Hong (2010, 2012),
stabilize must be set to TRUE, but, as with standard propensity score weights, this is optional.
Note that MMWS weights are also known as fine stratification weights and described by Desai et
al. (2017).

get_w_from_ps is not compatible with continuous treatments.

Value

A vector of weights. When subclass is not NULL, the subclasses are returned as the "subclass"
attribute. When estimand = "ATOS", the chosen value of alpha (the smallest propensity score
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allowed to remain in the sample) is returned in the "alpha" attribute.

Author(s)

Noah Greifer

References

Binary treatments
- estimand = "ATO"

Li, F., Morgan, K. L., & Zaslavsky, A. M. (2018). Balancing covariates via propensity score
weighting. Journal of the American Statistical Association, 113(521), 390–400. doi: 10.1080/
01621459.2016.1260466

- estimand = "ATM"

Li, L., & Greene, T. (2013). A Weighting Analogue to Pair Matching in Propensity Score Analysis.
The International Journal of Biostatistics, 9(2). doi: 10.1515/ijb20120030

- estimand = "ATOS"

Crump, R. K., Hotz, V. J., Imbens, G. W., & Mitnik, O. A. (2009). Dealing with limited overlap in
estimation of average treatment effects. Biometrika, 96(1), 187–199. doi: 10.1093/biomet/asn055

- Other estimands

Austin, P. C. (2011). An Introduction to Propensity Score Methods for Reducing the Effects of Con-
founding in Observational Studies. Multivariate Behavioral Research, 46(3), 399–424. doi: 10.1080/
00273171.2011.568786

- Marginal mean weighting through stratification (MMWS)

Hong, G. (2010). Marginal mean weighting through stratification: Adjustment for selection bias
in multilevel data. Journal of Educational and Behavioral Statistics, 35(5), 499–531. doi: 10.3102/
1076998609359785

Desai, R. J., Rothman, K. J., Bateman, B. . T., Hernandez-Diaz, S., & Huybrechts, K. F. (2017). A
Propensity-score-based Fine Stratification Approach for Confounding Adjustment When Exposure
Is Infrequent: Epidemiology, 28(2), 249–257. doi: 10.1097/EDE.0000000000000595

Multinomial Treatments
- estimand = "ATO"

Li, F., & Li, F. (2019). Propensity score weighting for causal inference with multiple treatments.
The Annals of Applied Statistics, 13(4), 2389–2415. doi: 10.1214/19AOAS1282

- estimand = "ATM"

Yoshida, K., Hernández-Díaz, S., Solomon, D. H., Jackson, J. W., Gagne, J. J., Glynn, R. J., &
Franklin, J. M. (2017). Matching weights to simultaneously compare three treatment groups: Com-
parison to three-way matching. Epidemiology (Cambridge, Mass.), 28(3), 387–395. doi: 10.1097/
EDE.0000000000000627

- Other estimands

McCaffrey, D. F., Griffin, B. A., Almirall, D., Slaughter, M. E., Ramchand, R., & Burgette, L.
F. (2013). A Tutorial on Propensity Score Estimation for Multiple Treatments Using Generalized
Boosted Models. Statistics in Medicine, 32(19), 3388–3414. doi: 10.1002/sim.5753

https://doi.org/10.1080/01621459.2016.1260466
https://doi.org/10.1080/01621459.2016.1260466
https://doi.org/10.1515/ijb-2012-0030
https://doi.org/10.1093/biomet/asn055
https://doi.org/10.1080/00273171.2011.568786
https://doi.org/10.1080/00273171.2011.568786
https://doi.org/10.3102/1076998609359785
https://doi.org/10.3102/1076998609359785
https://doi.org/10.1097/EDE.0000000000000595
https://doi.org/10.1214/19-AOAS1282
https://doi.org/10.1097/EDE.0000000000000627
https://doi.org/10.1097/EDE.0000000000000627
https://doi.org/10.1002/sim.5753
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- Marginal mean weighting through stratification

Hong, G. (2012). Marginal mean weighting through stratification: A generalized method for eval-
uating multivalued and multiple treatments with nonexperimental data. Psychological Methods,
17(1), 44–60. doi: 10.1037/a0024918

See Also

method_ps

Examples

library("cobalt")
data("lalonde", package = "cobalt")

ps.fit <- glm(treat ~ age + educ + race + married +
nodegree + re74 + re75, data = lalonde,

family = binomial)
ps <- ps.fit$fitted.values

w1 <- get_w_from_ps(ps, treat = lalonde$treat,
estimand = "ATT")

treatAB <- factor(ifelse(lalonde$treat == 1, "A", "B"))
w2 <- get_w_from_ps(ps, treat = treatAB,

estimand = "ATT", focal = "A")
all.equal(w1, w2)
w3 <- get_w_from_ps(ps, treat = treatAB,

estimand = "ATT", treated = "A")
all.equal(w1, w3)

#Using MMWS
w4 <- get_w_from_ps(ps, treat = lalonde$treat,

estimand = "ATE", subclass = 20,
stabilize = TRUE)

#A multi-category example using GBM predicted probabilities
library(gbm)
T3 <- factor(sample(c("A", "B", "C"), nrow(lalonde), replace = TRUE))

gbm.fit <- gbm(T3 ~ age + educ + race + married +
nodegree + re74 + re75, data = lalonde,

distribution = "multinomial", n.trees = 200,
interaction.depth = 3)

ps.multi <- drop(predict(gbm.fit, type = "response",
n.trees = 200))

w <- get_w_from_ps(ps.multi, T3, estimand = "ATE")

https://doi.org/10.1037/a0024918
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make_full_rank Make a design matrix full rank

Description

When writing user-defined methods for use with weightit, it may be necessary to take the poten-
tially non-full rank covs data frame and make it full rank for use in a downstream function. This
function performs that operation.

Usage

make_full_rank(mat,
with.intercept = TRUE)

Arguments

mat a numeric matrix or data frame to be transformed. Typically this contains co-
variates. NAs are not allowed.

with.intercept whether an intercept (i.e., a vector of 1s) should be added to mat before making
it full rank. If TRUE, the intercept will be used in determining whether a column
is linearly dependent on others. Regardless, no intercept will be included in the
output.

Details

make_full_rank calls qr to find the rank and linearly independent columns of mat, which are
retained while others are dropped. If with.intercept is set to TRUE, an intercept column is added
to the matrix before calling qr. Note that dependent columns that appear later in mat will be dropped
first.

See example at method_user.

Value

An object of the same type as mat containing only linearly independent columns.

Note

Older versions would drop all columns that only had one value. With with.intercept = FALSE, if
only one column has only one value, it will not be removed, and it will function as though there was
an intercept present; if more than only column has only one value, only the first one will remain.

Author(s)

Noah Greifer
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See Also

method_user, model.matrix

Examples

set.seed(1000)
c1 <- rbinom(10, 1, .4)
c2 <- 1-c1
c3 <- rnorm(10)
c4 <- 10*c3
mat <- data.frame(c1, c2, c3, c4)

make_full_rank(mat) #leaves c2 and c4

make_full_rank(mat, with.intercept = FALSE) #leaves c1, c2, and c4

method_cbps Covariate Balancing Propensity Score Weighting

Description

This page explains the details of estimating weights from covariate balancing propensity scores by
setting method = "cbps" in the call to weightit or weightitMSM. This method can be used with
binary, multinomial, and continuous treatments.

In general, this method relies on estimating propensity scores using generalized method of moments
and then converting those propensity scores into weights using a formula that depends on the desired
estimand. This method relies on CBPS from the CBPS package.

Binary Treatments: For binary treatments, this method estimates the propensity scores and
weights using CBPS. The following estimands are allowed: ATE, ATT, and ATC. The weights are
taken from the output of the CBPS fit object. When the estimand is the ATE, the return propensity
score is the probability of being in the "second" treatment group, i.e., levels(factor(treat))[2];
when the estimand is the ATC, the returned propensity score is the probability of being in the con-
trol (i.e., non-focal) group.

Multinomial Treatments: For multinomial treatments with three or four categories and when
the estimand is the ATE, this method estimates the propensity scores and weights using one call
to CBPS. For multinomial treatments with three or four categories or when the estimand is the
ATT, this method estimates the propensity scores and weights using multiple calls to CBPS. The
following estimands are allowed: ATE and ATT. The weights are taken from the output of the
CBPS fit objects.

Continuous Treatments: For continuous treatments, the generalized propensity score and
weights are estimated using CBPS.

Longitudinal Treatments: For longitudinal treatments, the weights are the product of the
weights estimated at each time point. This is not how CBMSM in the CBPS package estimates
weights for longitudinal treatments.

https://CRAN.R-project.org/package=CBPS
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Sampling Weights: Sampling weights are supported through s.weights in all scenarios. See
Note about sampling weights.

Missing Data: In the presence of missing data, the following value(s) for missing are allowed:

"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in
the covariates are then replaced with 0s (this value is arbitrary and does not affect estima-
tion). The weight estimation then proceeds with this new formula and set of covariates. The
covariates output in the resulting weightit object will be the original covariates with the NAs.

Details

CBPS estimates the coefficients of a logistic regression model (for binary treatments), multinomial
logistic regression model (form multinomial treatments), or linear regression model (for continuous
treatments) that is used to compute (generalized) propensity scores, from which the weights are
computed. It involves augmenting the standard regression score equations with the balance con-
straints in an over-identified generalized method of moments estimation. The idea is to nudge the
estimation of the coefficients toward those that produce balance in the weighted sample. The just-
identified version (with exact = FALSE) does away with the score equations for the coefficients so
that only the balance constraints (and the score equation for the variance of the error with a contin-
uous treatment) are used. The just-identified version will therefore produce superior balance on the
means (i.e., corresponding to the balance constraints) for binary and multinomial treatments and
linear terms for continuous treatments than will the over-identified version.

Note that WeightIt provides less functionality than does the CBPS package in terms of the versions
of CBPS available; for extensions to CBPS, the CBPS package may be preferred.

Additional Arguments

All arguments to CBPS can be passed through weightit or weightitMSM, with the following excep-
tions:

• method in CBPS is replaced with the argument over in weightit. Setting over = FALSE in
weightit is the equivalent of setting method = "exact" in CBPS.

• sample.weights is ignored because sampling weights are passed using s.weights.

• standardize is ignored.

All arguments take on the defaults of those in CBPS. It may be useful in many cases to set over =
FALSE, especially with continuous treatments.

Additional Outputs

obj When include.obj = TRUE, the CB(G)PS model fit. For binary treatments, multinomial treat-
ments with estimand = "ATE" and four or fewer treatment levels, and continuous treatments,
the output of the call to CBPS::CBPS. For multinomial treatments with estimand = "ATT" or
with more than four treatment levels, a list of CBPS fit objects.
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Note

When sampling weights are used with CBPS::CBPS, the estimated weights already incorporate the
sampling weights. When weightit is used with method = "cbps", the estimated weights are sepa-
rated from the sampling weights, as they are with all other methods.

References

Binary treatments
Imai, K., & Ratkovic, M. (2014). Covariate balancing propensity score. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 76(1), 243–263.

Multinomial Treatments
Imai, K., & Ratkovic, M. (2014). Covariate balancing propensity score. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 76(1), 243–263.

Continuous treatments
Fong, C., Hazlett, C., & Imai, K. (2018). Covariate balancing propensity score for a continuous
treatment: Application to the efficacy of political advertisements. The Annals of Applied Statistics,
12(1), 156–177. doi: 10.1214/17AOAS1101

See Also

weightit, weightitMSM

CBPS::CBPS for the fitting function

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "cbps", estimand = "ATT"))

summary(W1)
bal.tab(W1)

## Not run:
#Balancing covariates with respect to race (multinomial)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "cbps", estimand = "ATE"))

summary(W2)
bal.tab(W2)

## End(Not run)

#Balancing covariates with respect to re75 (continuous)
(W3 <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "cbps", over = FALSE))

https://doi.org/10.1214/17-AOAS1101
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summary(W3)
bal.tab(W3)

method_ebal Entropy Balancing

Description

This page explains the details of estimating weights using entropy balancing by setting method =
"ebal" in the call to weightit or weightitMSM. This method can be used with binary, multinomial,
and continuous treatments.

In general, this method relies on estimating weights by minimizing the entropy of the weights
subject to exact moment balancing constraints. This method relies on ebalance from the ebal
package for binary and multinomial treatments and on code written for WeightIt using optim for
continuous treatments.

Binary Treatments: For binary treatments, this method estimates the weights using ebalance.
The following estimands are allowed: ATE, ATT, and ATC. The weights are taken from the output
of the ebalance fit object. When the ATE is requested, ebalance is run twice, once for each
treatment group.

Multinomial Treatments: For multinomial treatments, this method estimates the weights using
ebalance. The following estimands are allowed: ATE and ATT. The weights are taken from
the output of the ebalance fit objects. When the ATE is requested, ebalance is run once for
each treatment group. When the ATT is requested, ebalance is run once for each non-focal (i.e.,
control) group.

Continuous Treatments: For continuous treatments, this method estimates the weights using
optim using formulas described by Hainmueller (2012) and Tübbicke (2020).

Longitudinal Treatments: For longitudinal treatments, the weights are the product of the
weights estimated at each time point. This method is not guaranteed to yield exact balance at
each time point. NOTE: the use of entropy balancing with longitudinal treatments has not been
validated!

Sampling Weights: Sampling weights are supported through s.weights in all scenarios.

Missing Data: In the presence of missing data, the following value(s) for missing are allowed:

"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in
the covariates are then replaced with 0s (this value is arbitrary and does not affect estima-
tion). The weight estimation then proceeds with this new formula and set of covariates. The
covariates output in the resulting weightit object will be the original covariates with the NAs.

https://CRAN.R-project.org/package=ebal
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Details

Entropy balancing involves the specification of an optimization problem, the solution to which is
then used to compute the weights. The constraints of the primal optimization problem correspond
to covariate balance on the means (for binary and multinomial tretaments) or treatment-covariate
covariances (for continuous treatments), positivity of the weights, and that the weights sum to a cer-
tain value. It turns out that the dual optimization problem is much easier to solve because it is over
only as many variables as there are balance constraints rather than over the weights for each unit and
it is unconstrained. Zhao and Percival (2017) found that entropy balancing for the ATT of a binary
treatment actually involves the estimation of the coeffcients of a logistic regression propensity score
model but using a specialized loss function different from that optimized with maximum likelihood.
Entropy balancing is doubly robust (for the ATT) in the sense that it is consistent either when the
true propensity score model is a logistic regression of the treatment on the covariates or when the
true outcome model for the control units is a linear regression of the outcome on the covariates, and
it attains a semi-parametric efficiency bound when both are true. Entropy balancing will always
yield exact balance on the included terms.

Additional Arguments

All arguments to ebal::ebalance can be passed through weightit or weightitMSM and take on
the defaults of those in ebal::ebalance.

For base.weights, a vector with length equal to the total number of units can be supplied, in con-
trast to ebal::ebalance, which requires a vector with length equal to the number of controls. This
works for continuous treatments as well. These correspond to the base weights q in Hainmueller
(2012). The estimated weights minimize the Kullback entropy divergence from the base weights,
defined as w ∗ log(w/q), subject to exact balance constraints. These can be used to supply previ-
ously estimated weights so that the newly estimated weights retain the some of the proprties of the
original weights while ensuring the balance constraints are met.

When standardize = TRUE in the call to weightit for binary and multinomial treatments, ebal::ebalance.trim
is run on the resulting ebalance fit objects. Doing so can reduce the variability of the weights while
maintaining covariate balance.

Additional Outputs

obj When include.obj = TRUE, the entropy balancing model fit. For binary treatments with
estimand = "ATT", the output of the call to ebal::ebalance or ebal::ebalance.trim when
stabilize = TRUE. For binary treatments with estimand = "ATE" and multinomial treatments,
a list of outputs of calls to ebal::ebalance or ebal::ebalance.trim. For continuous treat-
ments, the output of the call to optim, which contains the dual variables and convergence
information.

Author(s)

The code for continuous treatments was kindly contributed by Stefan Tübbicke (<tuebbicke@empwifo.uni-potsdam.de>).

References

Binary Treatments
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Hainmueller, J. (2012). Entropy Balancing for Causal Effects: A Multivariate Reweighting Method
to Produce Balanced Samples in Observational Studies. Political Analysis, 20(1), 25–46. doi: 10.1093/
pan/mpr025

Zhao, Q., & Percival, D. (2017). Entropy balancing is doubly robust. Journal of Causal Inference,
5(1). doi: 10.1515/jci20160010

Continuous Treatments

Tübbicke, S. (2020). Entropy Balancing for Continuous Treatments. ArXiv:2001.06281 [Econ,
Stat]. https://arxiv.org/abs/2001.06281

Vegetabile, B. G., Griffin, B. A., Coffman, D. L., Cefalu, M., & McCaffrey, D. F. (2020). Nonpara-
metric Estimation of Population Average Dose-Response Curves using Entropy Balancing Weights
for Continuous Exposures. ArXiv:2003.02938 [Stat]. https://arxiv.org/abs/2003.02938

See Also

weightit, weightitMSM

ebal::ebalance for the fitting function.

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "ebal", estimand = "ATT"))

summary(W1)
bal.tab(W1)

#Balancing covariates with respect to race (multinomial)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "ebal", estimand = "ATE",
standardize = TRUE))

summary(W2)
bal.tab(W2)

#Balancing covariates with respect to re75 (continuous)
(W3 <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "ebal"))

summary(W3)
bal.tab(W3)

https://doi.org/10.1093/pan/mpr025
https://doi.org/10.1093/pan/mpr025
https://doi.org/10.1515/jci-2016-0010
https://arxiv.org/abs/2001.06281
https://arxiv.org/abs/2003.02938


16 method_ebcw

method_ebcw Empirical Balancing Calibration Weighting

Description

This page explains the details of estimating weights using empirical balancing calibration weighting
(EBCW) by setting method = "ebcw" in the call to weightit. This method can be used with binary
and multinomial treatments.

In general, this method relies on estimating weights by minimizing a function of the weights subject
to exact moment balancing constraints. This method relies on ATE from the ATE package.

Binary Treatments: For binary treatments, this method estimates the weights using ATE with
ATT = TRUE. The following estimands are allowed: ATE, ATT, and ATC. The weights are taken
from the output of the ATE fit object. When the ATE is requested, ATE is run twice, once for each
treatment group.

Multinomial Treatments: For multinomial treatments, this method estimates the weights using
ATE with ATT = TRUE. The following estimands are allowed: ATE and ATT. The weights are taken
from the output of the ATE fit objects. When the ATE is requested, ATE is run once for each
treatment group. When the ATT is requested, ATE is run once for each non-focal (i.e., control)
group.

Continuous Treatments: Continuous treatments are not supported.

Longitudinal Treatments: For longitudinal treatments, the weights are the product of the
weights estimated at each time point. This method is not guaranteed to yield exact balance at
each time point. NOTE: the use of EBCW with longitudinal treatments has not been validated!

Sampling Weights: Sampling weights are supported through s.weights in all scenarios.

Missing Data: In the presence of missing data, the following value(s) for missing are allowed:

"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in
the covariates are then replaced with 0s (this value is arbitrary and does not affect estima-
tion). The weight estimation then proceeds with this new formula and set of covariates. The
covariates output in the resulting weightit object will be the original covariates with the NAs.

Additional Arguments

All argument to ATE can be passed through weightit, with the following exceptions:

ATT is ignored because the estimand is passed using estimand.

All arguments take on the defaults of those in ATE.

https://CRAN.R-project.org/package=ATE
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Additional Outputs

obj When include.obj = TRUE, the empirical balancing callibration model fit. For binary treat-
ments with estimand = "ATT", the output of the call to ATE::ATE. For binary treatments with
estimand = "ATE" and multinomial treatments, a list of outputs of calls to ATE::ATE.

References

Chan, K. C. G., Yam, S. C. P., & Zhang, Z. (2016). Globally efficient non-parametric inference
of average treatment effects by empirical balancing calibration weighting. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 78(3), 673–700. doi: 10.1111/rssb.12129

See Also

weightit

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "ebcw", estimand = "ATT"))

summary(W1)
bal.tab(W1)

#Balancing covariates with respect to race (multinomial)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "ebcw", estimand = "ATE"))

summary(W2)
bal.tab(W2)

method_energy Energy Balancing

Description

This page explains the details of estimating weights using energy balancing by setting method
= "energy" in the call to weightit or weightitMSM. This method can be used with binary and
multinomial treatments.

In general, this method relies on estimating weights by minimizing an energy statistic related to
covariate balance. For binary and multinomial treatments, this is the energy distance, which is a
multivariate distance between distributions, between treatment groups.

This method relies on code written for WeightIt using osqp from the osqp package to perform the
optimization. This method may be slow or memory-intensive for large datasets.

https://doi.org/10.1111/rssb.12129
https://CRAN.R-project.org/package=osqp
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Binary Treatments: For binary treatments, this method estimates the weights using osqp using
formulas described by Huling and Mak (2020). The following estimands are allowed: ATE, ATT,
and ATC.

Multinomial Treatments: For multinomial treatments, this method estimates the weights using
osqp using formulas described by Huling and Mak (2020). The following estimands are allowed:
ATE and ATT.

Continuous Treatments: Continuous treatments are not currently supported.

Longitudinal Treatments: For longitudinal treatments, the weights are the product of the
weights estimated at each time point. This method is not guaranteed to yield optimal balance
at each time point. NOTE: the use of energy balancing with longitudinal treatments has not been
validated!

Sampling Weights: Sampling weights are supported through s.weights in all scenarios. In
some cases, sampling weights will cause the optimization to fail due to lack of convexity or
infeasible constraints.

Missing Data: In the presence of missing data, the following value(s) for missing are allowed:

"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in
the covariates are then replaced with 0s (this value is arbitrary and does not affect estima-
tion). The weight estimation then proceeds with this new formula and set of covariates. The
covariates output in the resulting weightit object will be the original covariates with the NAs.

Additional Arguments

For binary and multinomial treatments, the following additional arguments can be specified:

improved logical; whether to use the improved energy balancing weights as described by Huling
and Mak (2020) when estimand = "ATE". This involves optimizing balance not only between
each treatment group and the overall sample, but also between each pair of treatment groups.
Huling and Mak (2020) found that the improved energy balancing weights generally outper-
formed standard energy balancing. Default is TRUE; set to FALSE to use the standard energy
balancing weights instead (not recommended).

dist.mat a numeric distance matrix to be used instead of the default distance matrix computed
by weightit, which uses dist with default arguments. Note that some distance matrices can
cause the R session to abort due to a bug within osqp, so this argument should be used with
caution. A distance matrix must be a square, symmetric, numeric matrix with zeros along the
diagnonal and a row and column for each unit.

The moments argument functions differently for method = "energy" from how it does with other
methods. When unspecified or set to zero, energy balancing weights are estimated as described
by Huling and Mak (2020). When moments is set to an integer larger than 0, additional balance
constraints on the requested moments of the covariates are also included, guaranteeing exact mo-
ment balance on these covariates while minimizing the energy distance of the weighted sample.
For binary and multinomial treatments, this involves exact balance on the means of the entered
covariates.
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Additional Outputs

obj When include.obj = TRUE, the output of the call to solve_osqp, which contains the dual
variables and convergence information.

Note

Sometimes the optimization can fail to converge because the problem is not convex. A warning will
be displayed if so. In these cases, try simply re-fitting the weights without changing anything. If
the method repeatedly fails, you should try another method (though this is uncommon).

Author(s)

Noah Greifer

References

Huling, J. D., & Mak, S. (2020). Energy Balancing of Covariate Distributions. ArXiv:2004.13962
[Stat]. https://arxiv.org/abs/2004.13962

See Also

weightit, weightitMSM

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Examples may not converge, but may after several runs
## Not run:
#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "energy", estimand = "ATE"))

summary(W1)
bal.tab(W1)

#Balancing covariates with respect to race (multinomial)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "energy", estimand = "ATT",
focal = "black"))

summary(W2)
bal.tab(W2)

## End(Not run)

https://arxiv.org/abs/2004.13962
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method_gbm Propensity Score Weighting Using Generalized Boosted Models

Description

This page explains the details of estimating weights from generalized boosted model-based propen-
sity scores by setting method = "gbm" in the call to weightit or weightitMSM. This method can be
used with binary, multinomial, and continuous treatments.

In general, this method relies on estimating propensity scores using generalized boosted modeling
and then converting those propensity scores into weights using a formula that depends on the desired
estimand. The algorithm involves using a balance-based or prediction-based criterion to optimize
in choosing the value of tuning parameters (the number of trees and possibly others). The method
relies on the gbm package.

This method mimics the functionality of functions in the twang package, but has improved perfor-
mance and more flexible options. See Details section for more details.

Binary Treatments: For binary treatments, this method estimates the propensity scores using
gbm.fit and then selects the optimal tuning parameter values using the method specified in the
stop.method argument. The following estimands are allowed: ATE, ATT, ATC, ATO, and ATM.
The weights are computed from the estimated propensity scores using get_w_from_ps, which
implements the standard formulas. Weights can also be computed using marginal mean weighting
through stratification for the ATE, ATT, and ATC. See get_w_from_ps for details.

Multinomial Treatments: For multinomial treatments, this method estimates the propensity
scores using gbm.fit with distribution = "multinomial" and then selects the optimal tun-
ing parameter values using the method specified in the stop.method argument. The follow-
ing estimands are allowed: ATE, ATT, ATC, ATO, and ATM. The weights are computed from
the estimated propensity scores using get_w_from_ps, which implements the standard formulas.
Weights can also be computed using marginal mean weighting through stratification for the ATE,
ATT, and ATC. See get_w_from_ps for details.

Continuous Treatments: For continuous treatments, this method estimates the generalized
propensity score using gbm.fit and then selects the optimal tuning parameter values using the
method specified in the stop.method argument.

Longitudinal Treatments: For longitudinal treatments, the weights are the product of the
weights estimated at each time point.

Sampling Weights: Sampling weights are supported through s.weights in all scenarios.

Missing Data: In the presence of missing data, the following value(s) for missing are allowed:

"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created that takes the value 1 if the original covariate is NA and 0 otherwise. The missing-
ness indicators are added to the model formula as main effects. The weight estimation then
proceeds with this new formula and set of covariates using surrogate splitting as described
below. The covariates output in the resulting weightit object will be the original covariates
with the NAs.

https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=twang
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"surr" Surrogate splitting is used to process NAs. No missingness indicators are created. Nodes
are split using only the non-missing values of each variable. To generate predicted values for
each unit, a non-missing variable that operates similarly to the variable with missingness is
used as a surrogate. Missing values are ignored when calculating balance statistics to choose
the optimal tree.

Details

Generalzied boosted modeling (GBM, also known as gradient boosting machines) is a machine
learning method that generates predicted values from a flexible regression of the treatment on the
covariates, which are treated as propensity scores and used to compute weights. It does this by
building a series of regression trees, each fit to the residuals of the last, minimizing a loss function
that depends on the distribution chosen. The optimal number of trees is a tuning parameter that
must be chosen; McCaffrey et al. (2004) were innovative in using covariate balance to select this
value rather than traditional machine learning performance metrics such as cross-validation accu-
racy. GBM is particularly effective for fitting nonlinear treatment models characterized by curves
and interactions, but performs worse for simpler treatment models. It is unclear which balance
measure should be used to select the number of trees, though research has indicated that balance
measures tend to perform better than cross-validation accuracy for estimating effective propensity
score weights.

WeightIt offers almost identical functionality to twang, the first package to implement this method.
Compared to the current version of twang, WeightIt offers more options for the measure of bal-
ance used to select the number of trees, improved performance, tuning of hyperparameters, more
estimands, and support for continuous treatments. WeightIt computes weights for multinomial
treatments different from how twang does; rather than fitting a separate binary GBM for each pair
of treatments, WeightIt fits a single multi-class GBM model and uses balance measures appropriate
for multinomial treatments.

Additional Arguments

The following additional arguments can be specified:

stop.method A string describing the balance criterion used to select the best weights. See stop.method
for allowable options for each treatment type. In addition, to optimize the cross-validation
error instead of balance, stop.method can be set as "cv{#}", where {#} is replaced by a
number representing the number of cross-validation folds used (e.g., "cv5" for 5-fold cross-
validation). For binary and multinomial treatments, the default is "es.mean", which mini-
mizes the average absolute standard mean difference among the covariates between treatment
groups. For continuous treatments, the default is "p.mean", which minimizes the average
absolute Pearson correlation between the treatment and covariates.

trim.at A number supplied to at in trim which trims the weights from all the trees before choos-
ing the best tree. This can be valuable when some weights are extreme, which occurs espe-
cially with continuous treatments. The default is 0 (i.e., no trimming).

distribution A string with the distribution used in the loss function of the boosted model. This
is supplied to the distribution argument in gbm.fit. For binary treatments, "bernoulli"
and "adaboost" are available, with "bernoulli" the default. For multinomial treatments,
only "multinomial" is allowed. For continuous treatments "gaussian", "laplace", and
"tdist" are available, with "gaussian" the default. This argument is tunable.



22 method_gbm

n.trees The maximum number of trees used. This is passed onto the n.trees argument in
gbm.fit. The default is 10000 for binary and multinomial treatments and 20000 for con-
tinuous treatments.

start.tree The tree at which to start balance checking. If you know the best balance isn’t in the
first 100 trees, for example, you can set start.tree = 101 so that balance statistics are not
computed on the first 100 trees. This can save some time since balance checking takes up the
bulk of the run time for some balance-based stopping methods, and is especially useful when
running the same model adding more and more trees. The default is 1, i.e., to start from the
very first tree in assessing balance.

interaction.depth The depth of the trees. This is passed onto the interaction.depth argu-
ment in gbm.fit. Higher values indicate better ability to capture nonlinear and nonadditive
relationships. The default is 3 for binary and multinomial treatments and 4 for continuous
treatments. This argument is tunable.

shrinkage The shrinkage parameter applied to the trees. This is passed onto the shrinkage ar-
gument in gbm.fit. The default is .01 for binary and multinomial treatments and .0005 for
continuous treatments. The lower this value is, the more trees one may have to include to
reach the optimum. This argument is tunable.

bag.fraction The fraction of the units randomly selected to propose the next tree in the expan-
sion. This is passed onto the bag.fraction argument in gbm.fit. The default is 1, but
smaller values should be tried. For values less then 1, subsequent runs with the same pa-
rameters will yield different results due to random sampling; be sure to seed the seed using
set.seed to ensure replicability of results.

All other arguments take on the defaults of those in gbm.fit, and some are not used at all.

The w argument in gbm.fit is ignored because sampling weights are passed using s.weights.

For continuous treatments only, the following arguments may be supplied:

density A function corresponding to the conditional density of the treatment. The standardized
residuals of the treatment model will be fed through this function to produce the numerator
and denominator of the generalized propensity score weights. If blank, dnorm is used as
recommended by Robins et al. (2000). This can also be supplied as a string containing the
name of the function to be called. If the string contains underscores, the call will be split
by the underscores and the latter splits will be supplied as arguments to the second argument
and beyond. For example, if density = "dt_2" is specified, the density used will be that of
a t-distribution with 2 degrees of freedom. Using a t-distribution can be useful when extreme
outcome values are observed (Naimi et al., 2014). Ignored if use.kernel = TRUE (described
below).

use.kernel If TRUE, uses kernel density estimation through the density function to estimate the
numerator and denominator densities for the weights. If FALSE (the default), the argument to
the density parameter is used instead.

bw, adjust, kernel, n If use.kernel = TRUE, the arguments to the density function. The defaults
are the same as those in density except that n is 10 times the number of units in the sample.

plot If use.kernel = TRUE with continuous treatments, whether to plot the estimated density.

For tunable arguments, multiple entries may be supplied, and weightit will choose the best value
by optimizing the criterion specified in stop.method. See below for additional outputs that are
included when arguments are supplied to be tuned. See Examples for an example of tuning.
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Additional Outputs

info A list with the following entries:

best.tree The number of trees at the optimum. If this is close to n.trees, weightit
should be rerun with a larger value for n.trees, and start.tree can be set to just
below best.tree. When other parameters are tuned, this is the best tree value in the best
cimbination of tuned parameters. See example.

tree.val A data frame with two columns: the first is the number of trees and the second is
the value of the criterion corresponding to that tree. Running plot on this object will plot
the criterion by the number of trees and is a good way to see patterns in the relationship
between them and to determine if more trees are needed. When other parameters are
tuned, these are the number of trees and the criterion values in the best combination of
tuned parameters. See example.

If any arguments are to be tuned (i.e., they have been supplied more than one value), the
following two additional components are included in info:

tune A data frame with a column for each argument being tuned, the best value of the balance
criterion for the given combination of parameters, and the number of trees at which the
best value was reached.

best.tune A one-row data frame containing the values of the arguments being tuned that
were ultimately selected to estimate the returned weights.

obj When include.obj = TRUE, the gbm fit used to generate the predicted values.

References

Binary treatments

McCaffrey, D. F., Ridgeway, G., & Morral, A. R. (2004). Propensity Score Estimation With Boosted
Regression for Evaluating Causal Effects in Observational Studies. Psychological Methods, 9(4),
403–425. doi: 10.1037/1082989X.9.4.403

Multinomial Treatments

McCaffrey, D. F., Griffin, B. A., Almirall, D., Slaughter, M. E., Ramchand, R., & Burgette, L.
F. (2013). A Tutorial on Propensity Score Estimation for Multiple Treatments Using Generalized
Boosted Models. Statistics in Medicine, 32(19), 3388–3414. doi: 10.1002/sim.5753

Continuous treatments

Zhu, Y., Coffman, D. L., & Ghosh, D. (2015). A Boosting Algorithm for Estimating Generalized
Propensity Scores with Continuous Treatments. Journal of Causal Inference, 3(1). doi: 10.1515/
jci20140022

See Also

weightit, weightitMSM, method_twang for an older version that calls functions in twang

stop.method for allowable arguments to stop.method

gbm::gbm.fit for the fitting function

https://doi.org/10.1037/1082-989X.9.4.403
https://doi.org/10.1002/sim.5753
https://doi.org/10.1515/jci-2014-0022
https://doi.org/10.1515/jci-2014-0022
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Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "gbm", estimand = "ATE",
stop.method = "es.max"))

summary(W1)
bal.tab(W1)

## Not run:
#Balancing covariates with respect to race (multinomial)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "gbm", estimand = "ATT",
focal = "hispan", stop.method = "ks.mean"))

summary(W2)
bal.tab(W2)

#Balancing covariates with respect to re75 (continuous)
(W3 <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "gbm", use.kernel = TRUE,
stop.method = "p.rms", trim.at = .97))

summary(W3)
bal.tab(W3)

#Using a t(3) density and illustrating the search for
#more trees.
W4a <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "gbm", density = "dt_3",
stop.method = "p.max",
n.trees = 10000)

W4a$info$best.tree #10000; optimum hasn't been found
plot(W4a$info$tree.val) #decreasing at right edge

W4b <- weightit(re75 ~ age + educ + married +
nodegree + re74, data = lalonde,

method = "gbm", density = "dt_3",
stop.method = "p.max",
start.tree = 10000,
n.trees = 20000)

W4b$info$best.tree #13417; optimum has been found
plot(W4b$info$tree.val) #increasing at right edge

bal.tab(W4b)
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#Tuning hyperparameters
(W5 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "gbm", estimand = "ATT",
stop.method = "ks.max",
interaction.depth = 2:4,
distribution = c("bernoulli", "adaboost")))

W5$info$tune

W5$info$best.tune #Best values of tuned parameters

bal.tab(W5, stats = "k")

## End(Not run)

method_npcbps Nonparametric Covariate Balancing Propensity Score Weighting

Description

This page explains the details of estimating weights from nonparametric covariate balancing propen-
sity scores by setting method = "npcbps" in the call to weightit or weightitMSM. This method can
be used with binary, multinomial, and continuous treatments.

In general, this method relies on estimating weights by maximizing the empirical likelihood of the
data subject to balance constraints. This method relies on npCBPS from the CBPS package.

Binary Treatments: For binary treatments, this method estimates the weights using npCBPS.
The ATE is the only estimand allowed. The weights are taken from the output of the npCBPS fit
object.

Multinomial Treatments: For multinomial treatments, this method estimates the weights using
npCBPS. The ATE is the only estimand allowed. The weights are taken from the output of the
npCBPS fit object.

Continuous Treatments: For continuous treatments, this method estimates the weights using
npCBPS. The weights are taken from the output of the npCBPS fit object.

Longitudinal Treatments: For longitudinal treatments, the weights are the product of the
weights estimated at each time point. This is not how CBMSM in the CBPS package estimates
weights for longitudinal treatments.

Sampling Weights: Sampling weights are not supported with method = "npcbps".

Missing Data: In the presence of missing data, the following value(s) for missing are allowed:

https://CRAN.R-project.org/package=CBPS
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"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in
the covariates are then replaced with 0s (this value is arbitrary and does not affect estima-
tion). The weight estimation then proceeds with this new formula and set of covariates. The
covariates output in the resulting weightit object will be the original covariates with the NAs.

Details

Nonparametric CBPS involves the specification of a constrained optimization problem over the
weights. The constraints correspond to covariate balance, and the loss function is the empirical
likelihood of the data given the weights. npCBPS is similar to entropy balancing and will generally
produce similar results. Because the optimization problem of npCBPS is not convex it can be slow
to converge or not converge at all, so approximate balance is allowed instead using the cor.prior
argument, which controls the average deviation from zero correlation between the treatment and
covariates allowed.

Additional Arguments

All arguments to npCBPS can be passed through weightit or weightitMSM.

All arguments take on the defaults of those in npCBPS.

Additional Outputs

obj When include.obj = TRUE, the nonparametric CB(G)PS model fit. The output of the call to
CBPS::npCBPS.

References

Fong, C., Hazlett, C., & Imai, K. (2018). Covariate balancing propensity score for a continuous
treatment: Application to the efficacy of political advertisements. The Annals of Applied Statistics,
12(1), 156–177. doi: 10.1214/17AOAS1101

See Also

weightit, weightitMSM

CBPS::npCBPS for the fitting function

Examples

# Examples take a long time to run
## Not run:
library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "npcbps", estimand = "ATE"))

summary(W1)

https://doi.org/10.1214/17-AOAS1101
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bal.tab(W1)

#Balancing covariates with respect to race (multinomial)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "npcbps", estimand = "ATE"))

summary(W2)
bal.tab(W2)

## End(Not run)

method_optweight Optimization-Based Weighting

Description

This page explains the details of estimating optimization-based weights 9also known as stable bal-
ancing weights) by setting method = "optweight" in the call to weightit or weightitMSM. This
method can be used with binary, multinomial, and continuous treatments.

In general, this method relies on estimating weights by solving a quadratic programming problem
subject to approximate or exact balance constraints. This method relies on optweight from the
optweight package.

Because optweight offers finer control and uses the same syntax as weightit, it is recommended
that optweight be used instead of weightit with method = "optweight".

Binary Treatments: For binary treatments, this method estimates the weights using optweight.
The following estimands are allowed: ATE, ATT, and ATC. The weights are taken from the output
of the optweight fit object.

Multinomial Treatments: For multinomial treatments, this method estimates the weights using
optweight. The following estimands are allowed: ATE and ATT. The weights are taken from the
output of the optweight fit object.

Continuous Treatments: For binary treatments, this method estimates the weights using optweight.
The weights are taken from the output of the optweight fit object.

Longitudinal Treatments: For longitudinal treatments, optweight estimates weights that si-
multaneously satisfy balance constraints at all time points, so only one model is fit to obtain the
weights. Using method = "optweight" in weightitMSM cause is.MSM.method to be set to TRUE
by default. Setting it to FALSE will run one model for each time point and multiply the weights
together, a method that is not recommended. NOTE: neither use of optimization-based weights
with longitudinal treatments has been validated!

Sampling Weights: Sampling weights are supported through s.weights in all scenarios.

Missing Data: In the presence of missing data, the following value(s) for missing are allowed:

https://CRAN.R-project.org/package=optweight
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"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in
the covariates are then replaced with 0s (this value is arbitrary and does not affect estima-
tion). The weight estimation then proceeds with this new formula and set of covariates. The
covariates output in the resulting weightit object will be the original covariates with the NAs.

Details

Stable balancing weights are weights that solve a constrained optimization problem, where the
constraints correspond to covariate balance and the loss function is the variance (or other norm)
of the weights. These weights maximize the effective sample size of the weighted sample subject
to user-supplied balance constraints. An advantage of this method over entropy balancing is the
ability to allow approximate, rather than exact, balance through the tols argument, which can
increase precision even for slight relaxations of the constraints.

Additional Arguments

All arguments to optweight can be passed through weightit or weightitMSM, with the following
exception:

targets cannot be used and is ignored.

All arguments take on the defaults of those in optweight.

Additional Outputs

info A list with one entry:

duals A data frame of dual variables for each balance constraint.

obj When include.obj = TRUE, the output of the call to optweight::optweight.

Note

The specification of tols differs between weightit and optweight. In weightit, one tolerance
value should be included per level of each factor variable, whereas in optweight, all levels of a
factor are given the same tolerance, and only one value needs to be supplied for a factor variable.
Because of the potential for confusion and ambiguity, it is recommended to only supply one value
for tols in weightit that applies to all variables. For finer control, use optweight directly.

Seriously, just use optweight. The syntax is almost identical and it’s compatible with cobalt, too.

References

Binary Treatments

Wang, Y., & Zubizarreta, J. R. (2020). Minimal dispersion approximately balancing weights:
Asymptotic properties and practical considerations. Biometrika, 107(1), 93–105. doi: 10.1093/
biomet/asz050

Zubizarreta, J. R. (2015). Stable Weights that Balance Covariates for Estimation With Incomplete
Outcome Data. Journal of the American Statistical Association, 110(511), 910–922. doi: 10.1080/
01621459.2015.1023805
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Multinomial Treatments
de los Angeles Resa, M., & Zubizarreta, J. R. (2020). Direct and stable weight adjustment in non-
experimental studies with multivalued treatments: Analysis of the effect of an earthquake on post-
traumatic stress. Journal of the Royal Statistical Society: Series A (Statistics in Society), n/a(n/a).
doi: 10.1111/rssa.12561

See Also

weightit, weightitMSM

optweight::optweight for the fitting function

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "optweight", estimand = "ATT",
tols = 0))

summary(W1)
bal.tab(W1)

#Balancing covariates with respect to race (multinomial)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "optweight", estimand = "ATE",
tols = .01))

summary(W2)
bal.tab(W2)

#Balancing covariates with respect to re75 (continuous)
(W3 <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "optweight", tols = .05))

summary(W3)
bal.tab(W3)

method_ps Propensity Score Weighting Using Generalized Linear Models

Description

This page explains the details of estimating weights from generalized linear model-based propensity
scores by setting method = "ps" in the call to weightit or weightitMSM. This method can be used
with binary, multinomial, and continuous treatments.

In general, this method relies on estimating propensity scores with a parametric generalized linear
model and then converting those propensity scores into weights using a formula that depends on

https://doi.org/10.1111/rssa.12561
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the desired estimand. For binary and multinomial treatments, a binomial or multinomial regression
model is used to estimate the propensity scores as the predicted probability of being in each treat-
ment given the covariates. For ordinal treatments, an ordinal regression model is used to estimate
generalized propensity scores. For continuous treatments, a generalized linear model is used to
estimate generalized propensity scores as the conditional density of treatment given the covariates.

Binary Treatments: For binary treatments, this method estimates the propensity scores using
glm. An additional argument is link, which uses the same options as link in family. The default
link is "logit", but others, including "probit", are allowed. The following estimands are allowed:
ATE, ATT, ATC, ATO, ATM, and ATOS. Weights can also be computed using marginal mean
weighting through stratification for the ATE, ATT, and ATC. See get_w_from_ps for details.

Multinomial Treatments: For multinomial treatments, the propensity scores are estimated using
multinomial regression from one of a few functions depending on the requested link: for logit
("logit") and probit ("probit") links, mlogit from the mlogit package is used; for the Bayesian
probit ("bayes.probit") link, mnp from the MNP package is used; and for the biased-reduced
multinomial logistic regression ("br.logit"), brmultinom from the brglm2 package is used. If
the treatment variable is an ordered factor, polr from the MASS package is used to fit ordinal
regression. Any of the methods allowed in the method argument of polr can be supplied to link.
The following estimands are allowed: ATE, ATT, ATC, ATO, and ATM. The weights for each
estimand are computed using the standard formulas or those mentioned above. Weights can also
be computed using marginal mean weighting through stratification for the ATE, ATT, and ATC.
See get_w_from_ps for details.

Continuous Treatments: For continuous treatments, the generalized propensity score is es-
timated using linear regression. The conditional density can be specified as normal or another
distribution. In addition, kernel density estimation can be used instead of assuming a specific den-
sity for the numerator and denominator of the generalized propensity score by setting use.kernel
= TRUE. Other arguments to density can be specified to refine the density estimation parameters.
plot = TRUE can be specified to plot the density for the numerator and denominator, which can be
helpful in diagnosing extreme weights.

Longitudinal Treatments: For longitudinal treatments, the weights are the product of the
weights estimated at each time point.

Sampling Weights: Sampling weights are supported through s.weights in all scenarios ex-
cept for multinomial treatments with link = "bayes.probit". Warning messages may appear
otherwise about non-integer successes, and these can be ignored.

Missing Data: In the presence of missing data, the following value(s) for missing are allowed:

"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in
the covariates are then replaced with 0s (this value is arbitrary and does not affect estima-
tion). The weight estimation then proceeds with this new formula and set of covariates. The
covariates output in the resulting weightit object will be the original covariates with the NAs.

"saem" For binary treatments with link = "logit" or continuous treatments, a stochastic ap-
proximation version of the EM algorithm (SAEM) is used via the misaem package. No
additional covariates are created. See Jiang et al. (2019) for information on this method. In
some cases, this is a suitable alternative to multiple imputation.

https://CRAN.R-project.org/package=misaem
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Additional Arguments

The following additional arguments can be specified:

link The link used in the generalized linear model for the propensity scores. For binary treat-
ments, link can be any of those allowed by binomial. A br. prefix can be added (e.g.,
"br.logit"); this changes the fitting method to the bias-corrected generalized linear models
implemented in the brglm2 package. For multinomial treatments, link can be "logit", "pro-
bit", "bayes.probit", or "br.logit". For ordered treatments, link can be any of those allowed by
the method argument of polr. For continuous treatments, link can be any of those allowed
by gaussian.

For continuous treatments only, the following arguments may be supplied:

density A function corresponding the conditional density of the treatment. The standardized
residuals of the treatment model will be fed through this function to produce the numera-
tor and denominator of the generalized propensity score weights. If blank, dnorm is used as
recommended by Robins et al. (2000). This can also be supplied as a string containing the
name of the function to be called. If the string contains underscores, the call will be split
by the underscores and the latter splits will be supplied as arguments to the second argument
and beyond. For example, if density = "dt_2" is specified, the density used will be that of
a t-distribution with 2 degrees of freedom. Using a t-distribution can be useful when extreme
outcome values are observed (Naimi et al., 2014). Ignored if use.kernel = TRUE (described
below).

use.kernel If TRUE, uses kernel density estimation through the density function to estimate the
numerator and denominator densities for the weights. If FALSE, the argument to the density
parameter is used instead.

bw, adjust, kernel, n If use.kernel = TRUE, the arguments to the density function. The defaults
are the same as those in density except that n is 10 times the number of units in the sample.

plot If use.kernel = TRUE with continuous treatments, whether to plot the estimated density.

For binary treatments, additional arguments to glm can be specified as well. The method argument
in glm is renamed to glm.method. This can be used to supply alternative fitting functions, such as
those implemented in the glm2 package. Other arguments to weightit are passed to ... in glm. In
the presence of missing data with link = "logit" and missing = "saem", additional arguments are
passed to miss.glm and predict.miss.glm, except the method argument in predict.miss.glm
is replaced with saem.method.

For multi-category treatments with link = "logit" or "probit", the default is to use multinomial
logistic or probit regression using the mlogit package. To request that separate binary logistic or
probit regressions are run instead, set use.mlogit = FALSE. This can be helpful when mlogit is
slow or fails to converge. With link = "logit", the option use.mnlogit = TRUE can be specified
to request that mnlogit from the mnlogit package is used instead, which can be faster for large
datasets.

For continuous treatments in the presence of missing data with missing = "saem", additional argu-
ments are passed to miss.lm and predict.miss.lm.

Additional Outputs

obj When include.obj = TRUE, the (generalized) propensity score model fit. For binary treat-
ments, the output of the call to glm. For binary treatments with missing data and missing

https://CRAN.R-project.org/package=brglm2
https://CRAN.R-project.org/package=glm2
https://CRAN.R-project.org/package=mlogit
https://CRAN.R-project.org/package=mnlogit
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= "saem", the output of the call to misaem::miss.glm. For ordinal treatments, the out-
put of the call to polr. For multinomial treatments with link = "logit" or "probit" and
use.mlogit = TRUE, the output of the call to mlogit::mlogit. For multinomial treatments
with use.mlogit = FALSE, a list of the glm fits. For multinomial treatments with link =
"br.logit", the output of the call to brglm2::brmultinom. For multinomial treatments with
link = "bayes.probit", the output of the call to MNP::MNP. For continuous treatments, the
output of the call to glm (or misaem::miss.lm if missing = "saem") for the predicted values
in the denominator density.

References

Binary treatments

- estimand = "ATO"
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- Other estimands
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founding in Observational Studies. Multivariate Behavioral Research, 46(3), 399–424. doi: 10.1080/
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- Marginal mean weighting through stratification

Hong, G. (2010). Marginal mean weighting through stratification: Adjustment for selection bias
in multilevel data. Journal of Educational and Behavioral Statistics, 35(5), 499–531. doi: 10.3102/
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- Bias-reduced logistic regression

See references for the brglm2 package.

- SAEM logistic regression for missing data
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Multinomial Treatments
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See Also

weightit, weightitMSM, get_w_from_ps

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "ps", estimand = "ATT",
link = "probit"))

summary(W1)
bal.tab(W1)

#Balancing covariates with respect to race (multinomial)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "ps", estimand = "ATE"))

summary(W2)
bal.tab(W2)

#Balancing covariates with respect to re75 (continuous)
(W3 <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "ps", use.kernel = TRUE))

https://doi.org/10.1097/EDE.0000000000000627
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summary(W3)
bal.tab(W3)

method_super Propensity Score Weighting Using SuperLearner

Description

This page explains the details of estimating weights from SuperLearner-based propensity scores by
setting method = "super" in the call to weightit or weightitMSM. This method can be used with
binary, multinomial, and continuous treatments.

In general, this method relies on estimating propensity scores using the SuperLearner algorithm
for stacking predictions and then converting those propensity scores into weights using a formula
that depends on the desired estimand. For binary and multinomial treatments, one or more binary
classification algorithms are used to estimate the propensity scores as the predicted probability of
being in each treatment given the covariates. For continuous treatments, regression algorithms are
used to estimate generalized propensity scores as the conditional density of treatment given the
covariates. This method relies on SuperLearner from the SuperLearner package.

Binary Treatments: For binary treatments, this method estimates the propensity scores using
SuperLearner. The following estimands are allowed: ATE, ATT, ATC, ATO, and ATM. The
weights for the ATE, ATT, and ATC are computed from the estimated propensity scores using the
standard formulas, the weights for the ATO are computed as in Li & Li (2018), and the weights
for the ATM (i.e., average treatment effect in the equivalent sample "pair-matched" with calipers)
are computed as in Yoshida et al. (2017). Weights can also be computed using marginal mean
weighting through stratification for the ATE, ATT, and ATC. See get_w_from_ps for details.

Multinomial Treatments: For multinomial treatments, the propensity scores are estimated using
several calls to SuperLearner, one for each treatment group, and the treatment probabilities are
normalized to sum to 1. The following estimands are allowed: ATE, ATT, ATO, and ATM. The
weights for each estimand are computed using the standard formulas or those mentioned above.
Weights can also be computed using marginal mean weighting through stratification for the ATE,
ATT, and ATC. See get_w_from_ps for details.

Continuous Treatments: For continuous treatments, the generalized propensity score is esti-
mated using SuperLearner. In addition, kernel density estimation can be used instead of assum-
ing a normal density for the numerator and denominator of the generalized propensity score by
setting use.kernel = TRUE. Other arguments to density can be specified to refine the density
estimation parameters. plot = TRUE can be specified to plot the density for the numerator and
denominator, which can be helpful in diagnosing extreme weights.

Longitudinal Treatments: For longitudinal treatments, the weights are the product of the
weights estimated at each time point.

Sampling Weights: Sampling weights are supported through s.weights in all scenarios.

Missing Data: In the presence of missing data, the following value(s) for missing are allowed:

https://CRAN.R-project.org/package=SuperLearner
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"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in
the covariates are then replaced with 0s. The weight estimation then proceeds with this new
formula and set of covariates. The covariates output in the resulting weightit object will be
the original covariates with the NAs.

Details

SuperLearner works by fitting several machine learning models to the treatment and covariates
and then taking a weighted combination of the generated predicted values to use as the propensity
scores, which are then used to construct weights. The machine learning models used are supplied
using the SL.library argument; the more models are supplied, the higher the chance of correctly
modeling the propensity score. The predicted values are combined using the method supplied in the
SL.method argument (which is nonnegative least squares by default). A benefit of SuperLearner is
that, asymptotically, it is guaranteed to perform as well as or better than the best-performing method
included in the library. Using Balance SuperLearner by setting SL.method = "method.balance"
works by selecting the combination of predicted values that minimizes an imbalance measure.

Additional Arguments

discrete if TRUE, uses discrete SuperLearner, which simply selects the best performing method.
Default FALSE, which finds the optimal combination of predictions for the libraries using
SL.method.

An argument to SL.library must be supplied. To see a list of available entries, use listWrappers.

All arguments to SuperLearner can be passed through weightit or weightitMSM, with the fol-
lowing exceptions:

• obsWeights is ignored because sampling weights are passed using s.weights.

• method in SuperLearner is replaced with the argument SL.method in weightit.

For continuous treatments only, the following arguments may be supplied:

density A function corresponding to the conditional density of the treatment. The standardized
residuals of the treatment model will be fed through this function to produce the numerator
and denominator of the generalized propensity score weights. If blank, dnorm is used as
recommended by Robins et al. (2000). This can also be supplied as a string containing the
name of the function to be called. If the string contains underscores, the call will be split
by the underscores and the latter splits will be supplied as arguments to the second argument
and beyond. For example, if density = "dt_2" is specified, the density used will be that of
a t-distribution with 2 degrees of freedom. Using a t-distribution can be useful when extreme
outcome values are observed (Naimi et al., 2014). Ignored if use.kernel = TRUE (described
below).

use.kernel If TRUE, uses kernel density estimation through the density function to estimate the
numerator and denominator densities for the weights. If FALSE, the argument to the density
parameter is used instead.

bw, adjust, kernel, n If use.kernel = TRUE, the arguments to the density function. The defaults
are the same as those in density except that n is 10 times the number of units in the sample.
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plot If use.kernel = TRUE, whether to plot the estimated density.

Balance SuperLearner: In addition to the methods allowed by SuperLearner, one can spec-
ify SL.method = "method.balance" to use "Balance SuperLearner" as described by Pirracchio
and Carone (2018), wherein covariate balance is used to choose the optimal combination of the
predictions from the methods specified with SL.library. Coefficients are chosen (one for each
prediction method) so that the weights generated from the weighted combination of the predic-
tions optimize a balance criterion, which must be set with the stop.method argument, described
below.

stop.method A string describing the balance criterion used to select the best weights. See
stop.method for allowable options for each treatment type. For binary and multinomial
treatments, the default is "es.mean", which minimizes the average absolute standard mean
difference among the covariates between treatment groups. For continuous treatments, the
default is "p.mean", which minimizes the average absolute Pearson correlation between the
treatment and covariates.

Note that this implementation differs from that of Pirracchio and Carone (2018) in that here, bal-
ance is measured only on the terms included in the model formula (i.e., and not their interactions
unless specifically included), and balance results from a sample weighted using the estimated
predicted values as propensity scores, not a sample matched using propensity score matching on
the predicted values. Binary and continuous treatments are supported, but currently multinomial
treatments are not.

Additional Outputs

info For binary and continuous treatments, a list with two entries, coef and cvRisk. For multino-
mial treatments, a list of lists with these two entries, one for each treatment level.

coef The coefficients in the linear combination of the predictions from each method in SL.library.
Higher values indicate that the corresponding method plays a larger role in determining
the resulting predicted value, and values close to zero indicate that the method plays little
role in determining the predicted value. When discrete = TRUE, these correspond to the
coefficients that would have been estimated had discrete been FALSE.

cvRisk The cross-validation risk for each method in SL.library. Higher values indicate that
the method has worse cross-validation accuracy. When SL.method = "method.balance",
the sample weighted balance statistic requested with stop.method. Higher values indi-
cate worse balance.

obj When include.obj = TRUE, the SuperLearner fit(s) used to generate the predicted values. For
binary and continuous treatments, the output of the call to SuperLearner::SuperLearner.
For multinomial treatments, a list of outputs to calls to SuperLearner::SuperLearner.

Note

Some methods formerly available in SuperLearner are now in SuperLearnerExtra, which can be
found on GitHub at https://github.com/ecpolley/SuperLearnerExtra.
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Robustness to Model Misspecification Using Super Learner. American Journal of Epidemiology,
181(2), 108–119. doi: 10.1093/aje/kwu253

Continuous treatments
Kreif, N., Grieve, R., Díaz, I., & Harrison, D. (2015). Evaluation of the Effect of a Continuous
Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain
Injury. Health Economics, 24(9), 1213–1228. doi: 10.1002/hec.3189

- Balance SuperLearner (SL.method = "method.balance")

Pirracchio, R., & Carone, M. (2018). The Balance Super Learner: A robust adaptation of the
Super Learner to improve estimation of the average treatment effect in the treated based on propen-
sity score matching. Statistical Methods in Medical Research, 27(8), 2504–2518. doi: 10.1177/
0962280216682055

See method_ps for additional references.

See Also

weightit, weightitMSM, get_w_from_ps stop.method for allowable arguments to stop.method
when using SL.method = "method.balance"

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "super", estimand = "ATT",
SL.library = c("SL.glm", "SL.stepAIC",

"SL.glm.interaction")))
summary(W1)
bal.tab(W1)

#Balancing covariates with respect to race (multinomial)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "super", estimand = "ATE",
SL.library = c("SL.glm", "SL.stepAIC",

"SL.glm.interaction")))
summary(W2)
bal.tab(W2)

#Balancing covariates with respect to re75 (continuous)
#assuming t(8) conditional density for treatment
(W3 <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "super", density = "dt_8",
SL.library = c("SL.glm", "SL.ridge",

"SL.glm.interaction")))
summary(W3)

https://doi.org/10.1093/aje/kwu253
https://doi.org/10.1002/hec.3189
https://doi.org/10.1177/0962280216682055
https://doi.org/10.1177/0962280216682055
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bal.tab(W3)

#Balancing covariates between treatment groups (binary)
# using balance SuperLearner to minimize the average
# KS statistic
(W4 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "super", estimand = "ATT",
SL.library = c("SL.glm", "SL.stepAIC",

"SL.lda"),
SL.method = "method.balance",
stop.method = "ks.mean"))

summary(W4)
bal.tab(W4)

method_twang Propensity Score Weighting Using Generalized Boosted Models with
TWANG

Description

This page explains the details of estimating weights from generalized boosted model-based propen-
sity scores by setting method = "twang" in the call to weightit or weightitMSM. This method can
be used with binary, multinomial, and continuous treatments.

In general, this method relies on estimating propensity scores using generalized boosted modeling
and then converting those propensity scores into weights using a formula that depends on the desired
estimand. The algorithm involves choosing a balance criterion to optimize so that balance, rather
than prediction, is prioritized. For binary and multinomial treatments, this method relies on ps from
the twang package. For continuous treatments, this method relies on ps.cont from WeightIt.

See the Details section at method_gbm for a discussion of how this method differs from method =
"gbm". In general, using method = "gbm" is preferred because it is faster and more flexible. method
= "twang" is no longer being developed and will likely become defunct in future versions.

Binary Treatments: For binary treatments, this method estimates the propensity scores using
ps. The following estimands are allowed: ATE, ATT, and ATC. The weights for the ATE, ATT,
and ATC are computed from the estimated propensity scores using the standard formulas. When
the estimand is the ATE, the return propensity score is the probability of being in the "second"
treatment group, i.e., levels(factor(treat))[2]; when the estimand is the ATC, the returned
propensity score is the probability of being in the control (i.e., non-focal) group.

Multinomial Treatments: For multinomial treatments, this method estimates the propensity
scores using multiple calls to ps (which is the same thing that mnps in twang does behind the
scenes). The following estimands are allowed: ATE and ATT. The weights are computed from the
estimated propensity scores using the standard formulas.

Continuous Treatments: For continuous treatments, the generalized propensity score is esti-
mated using ps.cont.

https://CRAN.R-project.org/package=twang
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Longitudinal Treatments: For longitudinal treatments, the weights are the product of the
weights estimated at each time point, which is what iptw in twang does behind the scenes.

Sampling Weights: Sampling weights are supported through s.weights in all scenarios.

Missing Data: In the presence of missing data, the following value(s) for missing are allowed:

"ind" (default) First, for each variable with missingness, a new missingness indicator variable is
created which takes the value 1 if the original covariate is NA and 0 otherwise. The missing-
ness indicators are added to the model formula as main effects. The weight estimation then
proceeds with this new formula and set of covariates using surrogate splitting as described
below. The covariates output in the resulting weightit object will be the original covariates
with the NAs.

"surr" Surrogate splitting is used to process NAs. No missingness indicators are created. Nodes
are split using only the non-missing values of each variable. To generate predicted values for
each unit, a non-missing variable that operates similarly to the variable with missingness is
used as a surrogate. Missing values are ignored when calculating balance statistics to choose
the optimal tree.

Additional Arguments

Any argument to ps or ps.cont can be passed through weightit or weightitMSM. The argument
stop.method is required, and, in contrast to ps and ps.cont, can only be of length 1. If not
provided, a default will be used ("es.mean" for binary and multinomial treatments and "p.mean"
for continuous treatments).

sampw is ignored because sampling weights are passed using s.weights.

All other arguments take on the defaults of those in ps and ps.cont. The main arguments of interest
are n.trees and interaction.depth, and increasing them can improve performance.

Additional Outputs

obj When include.obj = TRUE, the twang model fit. For binary treatments, the output of the call
to twang::ps. For multinomial treatments, a list of ps fit objects. For continuous treatments,
the output of the call to ps.cont.

References

Binary treatments
McCaffrey, D. F., Ridgeway, G., & Morral, A. R. (2004). Propensity Score Estimation With Boosted
Regression for Evaluating Causal Effects in Observational Studies. Psychological Methods, 9(4),
403–425. doi: 10.1037/1082989X.9.4.403

Multinomial Treatments
McCaffrey, D. F., Griffin, B. A., Almirall, D., Slaughter, M. E., Ramchand, R., & Burgette, L.
F. (2013). A Tutorial on Propensity Score Estimation for Multiple Treatments Using Generalized
Boosted Models. Statistics in Medicine, 32(19), 3388–3414. doi: 10.1002/sim.5753

Continuous treatments
Zhu, Y., Coffman, D. L., & Ghosh, D. (2015). A Boosting Algorithm for Estimating Generalized
Propensity Scores with Continuous Treatments. Journal of Causal Inference, 3(1).

https://doi.org/10.1037/1082-989X.9.4.403
https://doi.org/10.1002/sim.5753
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See Also

weightit, weightitMSM, method_gbm

Examples

# Examples take a while to run
## Not run:
library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "twang", estimand = "ATT",
stop.method = "es.max"))

summary(W1)
bal.tab(W1)

#Balancing covariates with respect to race (multinomial)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "twang", estimand = "ATE",
stop.method = "ks.mean"))

summary(W2)
bal.tab(W2)

#Balancing covariates with respect to re75 (continuous)
(W3 <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "twang", use.kernel = TRUE,
stop.method = "p.max"))

summary(W3)
bal.tab(W3)

## End(Not run)

method_user User-Defined Functions for Estimating Weights

Description

This page explains the details of estimating weights using a user-defined function. The function
must take in arguments that are passed to it by weightit or weightitMSM and return a vector of
weights or a list containing the weights.

To supply user-defined function, the function object should be entered directly to method; for ex-
ample, for a function fun, method = fun.

Point Treatments: The following arguments are automatically passed to the user-defined func-
tion, which should have named parameters corresponding to them:
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• treat: a vector of treatment status for each unit. This comes directly from the left hand
side of the formula passed to weightit and so will have it’s type (e.g., numeric, factor, etc.),
which may need to be converted.

• covs: a data frame of covariate values for each unit. This comes directly from the right hand
side of the formula passed to weightit. The covariates are processed so that all columns
are numeric; all factor variables are split into dummies and all interactions are evaluated. All
levels of factor variables are given dummies, so the matrix of the covariates is not full rank.
Users can use make_full_rank, which accepts a numeric matrix or data frame and removes
columns to make it full rank, if a full rank covariate matrix is desired.

• s.weights: a numeric vector of sampling weights, one for each unit.
• ps: a numeric vector of propensity scores.
• subset: a logical vector the same length as treat that is TRUE for units to be included in the

estimation and FALSE otherwise. This is used to subset the input objects when exact is used.
treat, covs, s.weights, and ps, if supplied, will already have been subsetted by subset.

• estimand: a character vector of length 1 containing the desired estimand. The characters will
have been converted to uppercase. If "ATC" was supplied to estimand, weightit sets focal
to the control level (usually 0 or the lowest level of treat) and sets estimand to "ATT".

• focal: a character vector of length 1 containing the focal level of the treatment when the
estimand is the ATT (or the ATC as detailed above). weightit ensures the value of focal is
a level of treat.

• stabilize: a logical vector of length 1. It is not processed by weightit before it reaches
the fitting function.

• moments: a numeric vector of length 1. It is not processed by weightit before it reaches
the fitting function except that as.integer is applied to it. This is used in other methods
to determine whether polynomials of the entered covariates are to be used in the weight
estimation.

• int: a logical vector of length 1. It is not processed by weightit before it reaches the fitting
function. This is used in other methods to determine whether interactions of the entered
covariates are to be used in the weight estimation.

None of these parameters are required to be in the fitting function. These are simply those that are
automatically available.
In addition, any additional arguments supplied to weightit will be passed on to the fitting func-
tion. weightit ensures the arguments correspond to the parameters of the fitting function and
throws an error if an incorrectly named argument is supplied and the fitting function doesn’t in-
clude ... as a parameter.
The fitting function must output either a numeric vector of weights or a list (or list-like object)
with an entry named wither "w" or "weights". If a list, the list can contain other named entries,
but only entries named "w", "weights", "ps", and "fit.obj" will be processed. "ps" is a vector
of propensity scores and "fit.obj" should be an object used in the fitting process that a user may
want to examine and that is included in the weightit output object as "obj" when include.obj
= TRUE. The "ps" and "fit.obj" components are optional, but "weights" or "w" is required.

Longitudinal Treatments: Longitudinal treatments can be handled either by running the fit-
ting function for point treatments for each time point and multiplying the resulting weights to-
gether or by running a method that accommodates multiple time points and outputs a single set of
weights. For the former, weightitMSM can be used with the user-defined function just as it is with
weightit. The latter method is not yet accommodated by weightitMSM, but will be someday,
maybe.
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See Also

weightit, weightitMSM

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#A user-defined version of method = "ps"
my.ps <- function(treat, covs, estimand, focal = NULL) {

covs <- make_full_rank(covs)
d <- data.frame(treat, covs)
f <- formula(d)
ps <- glm(f, data = d, family = "binomial")$fitted
w <- get_w_from_ps(ps, treat = treat, estimand = estimand,

focal = focal)

return(list(w = w, ps = ps))
}

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = my.ps, estimand = "ATT"))

summary(W1)
bal.tab(W1)

#Balancing covariates for longitudinal treatments
# my.ps is used at each time point.
library("twang")
data("iptwExWide", package = "twang")
(W2 <- weightitMSM(list(tx1 ~ age + gender + use0,

tx2 ~ tx1 + use1 + age + gender + use0,
tx3 ~ tx2 + use2 + tx1 + use1 + age + gender + use0),

data = iptwExWide,
method = my.ps))

summary(W2)
bal.tab(W2)

# Kernel balancing using the KBAL package, available
# using devtools::install_github("chadhazlett/KBAL").
# Only the ATT and ATC are available. Use 'kbal.method'
# instead of 'method' in weightit() to choose between
# "ebal" and "el".

## Not run:
kbal.fun <- function(treat, covs, estimand, focal, ...) {

args <- list(...)
if (is_not_null(focal))

treat <- as.numeric(treat == focal)
else if (estimand != "ATT")
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stop("estimand must be 'ATT' or 'ATC'.", call. = FALSE)
if ("kbal.method" %in% names(args)) {

names(args)[names(args) == "kbal.method"] <- "method"
}
args[names(args) %nin% setdiff(names(formals(KBAL::kbal)),

c("X", "D"))] <- NULL
k.out <- do.call(KBAL::kbal, c(list(X = covs, D = treat),

args))
w <- k.out$w
return(list(w = w))

}

(Wk <- weightit(treat ~ age + educ + married +
nodegree + re74, data = lalonde,
method = kbal.fun, estimand = "ATT",
kbal.method = "ebal"))

summary(Wk)
bal.tab(Wk, disp.ks = TRUE)

## End(Not run)

ps.cont Generalized Propensity Score Estimation using GBM

Description

ps.cont calculates generalized propensity scores and corresponding weights using boosted linear
regression as implemented in gbm. This function extends ps in twang to continuous treatments.
The syntax and output are largely the same. The GBM parameter defaults are those found in Zhu,
Coffman, & Ghosh (2015).

Note: ps.cont will phased out when twang adds functionality for continuous treatments. All
functionality and more is already present in weightit with method_gbm[method = "gbm"].

Usage

ps.cont(formula, data,
n.trees = 20000,
interaction.depth = 4,
shrinkage = 0.0005,
bag.fraction = 1,
print.level = 0,
verbose = FALSE,
stop.method,
sampw = NULL,
optimize = 1,
use.kernel = FALSE,
...)

## S3 method for class 'ps.cont'
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summary(object, ...)
## S3 method for class 'ps.cont'
plot(x, ...)
## S3 method for class 'ps.cont'
boxplot(x, ...)

Arguments

formula A formula for the propensity score model with the treatment indicator on the left
side of the formula and the potential confounding variables on the right side.

data The dataset in the form of a data frame, which should include treatment assign-
ment as well as the covariates specified in formula.

n.trees The number of GBM iterations passed on to gbm. The more, the better the final
solution will be, but the more time it will take.

interaction.depth

The interaction.depth passed on to gbm.

shrinkage The shrinkage passed on to gbm.

bag.fraction The bag.fraction passed on to gbm.

print.level Currently ignored.

verbose If TRUE, information will be printed to monitor the the progress of the fitting.

stop.method A method or methods of measuring and summarizing balance across pretreat-
ment variables. Current options are p.max, p.mean, p.rms, s.max, s.mean, and
s.rms. p refers to the Pearson correlation and s refers to the Spearman correla-
tion. These are summarized across the pretreatment variables by the maximum
(max), the mean (mean), or the square root of the mean of the squares (rms).

sampw Optional sampling weights.

optimize A numeric value, either 0, 1, or 2. If 0, balance will be checked for every tree,
and the tree with the best balance will be the one used to generate the final
weights. If 1, the default, balance will be checked for a subset of trees, and
then optimize will be used to find the tree with the best balance within the tree
interval chosen. If 2, optimize will be used to find the tree that yields the best
balance. 0 takes the longest but is guaranteed to find the best balance among the
trees. 2 is the quickest but will often choose a tree that that suboptimal balance,
though not by much. 1 is a compromise between speed and comprehensiveness
and is the algorithm implemented in twang.

use.kernel Whether to use kernel density estimation as implemented in density to estimate
the numerator of the weights. If TRUE, density will be used. If FALSE, the
default, a normal density will be assumed and will be estimated using dnorm.

object, x A ps.cont object.

... For ps.cont, if use.density = TRUE, additional arguments to density, which
is used to produce the density for the numerator of the weights. These include
bw, adjust, kernel, and n. The default values are the defaults for density,
except n, which is 10 times the number of units.
For summary.ps.cont, additional arguments affecting the summary produced.
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Details

ps.cont extends ps in twang to continuous treatments. It estimates weights from a series of trees
and then outputs the weights that optimize a user-set criterion. The criterion employed involves
the correlation between the treatment and each covariate. In a fully balanced sample, the treatment
will have a correlation of 0 with covariates sufficient for removing confounding. Zhu, Coffman, &
Ghosh (2015), who were the first to describe GBM for propensity score weighting with continuous
treatments, recommend this procedure and provided R code to implement the methods they de-
scribe. ps.cont adapts their syntax to make it consistent with that of ps in twang. As in Zhu et al.
(2015), when the Pearson correlation is requested, weighted biserial correlations will be computed
for binary covariates.

The weights are estimated as the marginal density of the treatment divided by the conditional density
of the treatment on the covariates for each unit. For the marginal density, a kernel density estimator
can be implemented using the density function. For the conditional density, a Gaussian density is
assumed. Note that with treatment with outlying values, extreme weights can be produced, so it is
important to examine the weights and trim them if necessary.

It is recommended to use as many trees as possible, though this requires more computation time, es-
pecially with use.optimize set to 0. There is little difference between using Pearson and Spearman
correlations or between using the raw correlations and the Z-transformed correlations. Typically the
only gbm-related options that should be changed are the interaction depth and number of trees.

Missing data is not allowed in the covariates because of the ambiguity in computing correlations
with missing values.

summary.ps.cont compresses the information in the desc component of the ps.cont object into a
short summary table describing the size of the dataset and the quality of the generalized propensity
score weights, in a similar way to summary.ps.

plot.ps.cont and boxplot.ps.cont function almost identically to plot.ps and boxplot.ps.
See the help pages there for more information. Note that for plot.ps, only options 1, 2, and 6 are
available for the plots argument. When use.optimize = 2, option 1 is not available.

Value

Returns an object of class ps and ps.cont, a list containing

gbm.obj The returned gbm object.

treat The treatment variable.

desc a list containing balance tables for each method selected in stop.method. In-
cludes a component for the unweighted analysis names “unw”. Each desc com-
ponent includes a list with the following components:

ess The effective sample size
n The number of subjects
max.p.cor The largest absolute Pearson correlation across the covariates
mean.p.cor The mean absolute Pearson correlation of the covariates
rmse.p.cor The root mean squared Pearson correlation across the covariates
max.s.cor The largest absolute Spearman correlation across the covariates
mean.s.cor The mean absolute Spearman correlation of the covariates
rmse.s.cor The root mean squared Spearman correlation across the covariates
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bal.tab a table summarizing the quality of the weights for yielding low treatment-
covariate correlations. This table is best extracted using bal.table.

n.trees The estimated optimal number of gbm iterations to optimize the loss
function for the associated stop.methods

ps a data frame containing the estimated generalized propensity scores. Each col-
umn is associated with one of the methods selected in stop.methods.

w a data frame containing the propensity score weights. Each column is associated
with one of the methods selected in stop.methods. If sampling weights are
given then these are incorporated into the weights.

estimand NULL

datestamp Records the date of the analysis.

parameters Saves the ps.cont call.

alerts NULL

iters A sequence of iterations used in the GBM fits used by plot.ps.cont.

balance The balance summary for each tree examined, with a column for each stop.method.
If optimize = 0, this will contain balance summaries for all trees. If optimize
= 1, this will contain balance summaries for the subset of trees corresponding to
iters. If optimize = 2, this will be NULL.

n.trees Maximum number of trees considered in GBM fit.

data Data as specified in the data argument.

The NULL entries exist so the output object is similar to that of ps in twang.

Author(s)

Noah Greifer

ps.cont is heavily adapted from the R code in Zhu, Coffman, & Ghosh (2015). In contrast
with their code, ps.cont uses weighted Pearson and Spearman correlations rather than probability
weighted bootstrapped correlations, allows for different degrees of optimization in searching for
the best solution, and allows for the use of kernel density estimation for the generalized propensity
score. ps.cont also takes inspiration from ps in twang.

References

Zhu, Y., Coffman, D. L., & Ghosh, D. (2015). A Boosting Algorithm for Estimating Generalized
Propensity Scores with Continuous Treatments. Journal of Causal Inference, 3(1). doi: 10.1515/
jci20140022

See Also

weightit and method_gbm for its implementation using weightit syntax.

ps and mnps for GBM with binary and multinomial treatments.

gbm for the underlying machinery and explanation of the parameters.

https://doi.org/10.1515/jci-2014-0022
https://doi.org/10.1515/jci-2014-0022
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Examples

# Examples take a long time
## Not run:
library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates with respect to re75
psc.out <- ps.cont(re75 ~ age + educ + married +

nodegree + race + re74, data = lalonde,
stop.method = c("p.mean", "p.max"),
use.optimize = 2)

summary(psc.out)
twang::bal.table(psc.out) #twang's bal.table

## End(Not run)

sbps Subgroup Balancing Propensity Score

Description

Implements the subgroup balancing propensity score (SBPS), which is an algorithm that attempts
to achieve balance in subgroups by sharing information from the overall sample and subgroups.
(Dong, Zhang, Zeng, & Li, 2020; DZZL). Each subgroup can use either weights estimated using the
whole sample, weights estimated using just that subgroup, or a combination of the two. The optimal
combination is chosen as that which minimizes an imbalance criterion that includes subgroup as
well as overall balance.

Usage

sbps(obj, obj2 = NULL,
moderator = NULL,
formula = NULL,
data = NULL,
smooth = FALSE,
full.search)

## S3 method for class 'weightit.sbps'
print(x, ...)

## S3 method for class 'weightit.sbps'
summary(object, top = 5,

ignore.s.weights = FALSE, ...)

## S3 method for class 'summary.weightit.sbps'
print(x, ...)
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Arguments

obj a weightit object containing weights estimated in the overall sample.

obj2 a weightit object containing weights estimated in the subgroups. Typically this
has been estimated by including by in the call to weightit(). Either obj2 or
moderator must be specified.

moderator optional; a string containing the name of the variable in data for which weight-
ing is to be done within subgroups or a one-sided formula with the subgrouping
variable on the right-hand side. This argument is analogous to the by argument
in weightit(), and in fact it is passed on to by. Either obj2 or moderator must
be specified.

formula an optional formula with the covariates for which balance is to be optimized. If
not specified, the formula in obj$call will be used.

data an optional data set in the form of a data frame that contains the variables in
formula or moderator.

smooth logical; whether the smooth version of the SBPS should be used. This is only
compatible with weightit methods that return a propensity score.

full.search logical; when smooth = FALSE, whether every combination of subgroup and
overall weights should be evaluated. If FALSE, a stochastic search as described
in DZZL will be used instead. If TRUE, all 2^R combinations will be checked,
where R is the number of subgroups, which can take a long time with many
subgroups. If unspecified, will default to TRUE if R <= 8 and FALSE otherwise.

x a weightit.sbps or summary.weightit.sbps object; the output of a call to
sbps or summary.weightit.sbps.

object a weightit.sbps object; the output of a call to sbps.

top how many of the largest and smallest weights to display. Default is 5.
ignore.s.weights

whether or not to ignore sampling weights when computing the weight sum-
mary. If FALSE, the default, the estimated weights will be multiplied by the
sampling weights (if any) before values are computed.

... for print, arguments passed to print. Ignored otherwise.

Details

The SBPS relies on two sets of weights: one estimated in the overall sample and one estimated
within each subgroup. The algorithm decides whether each subgroup should use the weights es-
timated in the overall sample or those estimated in the subgroup. There are 2^R permutations of
overall and subgroup weights, where R is the number of subgroups. The optimal permutation is
chosen as that which minimizes a balance criterion as described in DZZL. The balance criterion
used here is, for binary and multinomial treatments, the sum of the squared standardized mean dif-
ferences within subgroups and overall, which are computed using col_w_smd() in cobalt, and for
continuous treatments, the sum of the squared correlations between each covariate and treatment
within subgroups and overall, which are computed using col_w_corr() in cobalt.
The smooth version estimates weights that determine the relative contribution of the overall and
subgroup propensity scores to a weighted average propensity score for each subgroup. If P_O are
the propensity scores estimated in the overall sample and P_S are the propensity scores estimated
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in each subgroup, the smooth SBPS finds R coefficients C so that for each subgroup, the ultimate
propensity score is C ∗ PS + (1− C) ∗ PO, and weights are computed from this propensity score.
The coefficients are estimated using optim with method = "L-BFGS-B". When C is estimated to be
1 or 0 for each subgroup, the smooth SBPS coincides with the standard SBPS.

If obj2 is not specified and moderator is, sbps() will attempt to refit the model specified in obj
with the moderator in the by argument. This relies on the environment in which obj was created
to be intact and can take some time if obj was hard to fit. It’s safer to estimate obj and obj2 (the
latter simply by including the moderator in the by argument) and supply these to SBPS.

Value

A weightit.sbps object, which inherits from weightit. This contains all the information in obj
with the weights, propensity scores, call, and possibly covariates updated from sbps(). In addition,
the prop.subgroup component contains the values of the coefficients C for the subgroups (which
are either 0 or 1 for the standard SBPS), and the moderator component contains a data.frame with
the moderator.

This object has its own summary methods and is compatible with cobalt functions. The cluster
argument should be used with cobalt functions to accurately reflect the performance of the weights
in balancing the subgroups.

Author(s)

Noah Greifer

References

Dong, J., Zhang, J. L., Zeng, S., & Li, F. (2020). Subgroup balancing propensity score. Statistical
Methods in Medical Research, 29(3), 659–676. doi: 10.1177/0962280219870836

See Also

weightit, summary.weightit

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups within races
(W1 <- weightit(treat ~ age + educ + married +

nodegree + race + re74, data = lalonde,
method = "ps", estimand = "ATT"))

(W2 <- weightit(treat ~ age + educ + married +
nodegree + race + re74, data = lalonde,
method = "ps", estimand = "ATT",
by = "race"))

S <- sbps(W1, W2)
print(S)
summary(S)

https://doi.org/10.1177/0962280219870836
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bal.tab(S, cluster = "race")

#Could also have run
# sbps(W1, moderator = "race")

S_ <- sbps(W1, W2, smooth = TRUE)
print(S_)
summary(S_)
bal.tab(S_, cluster = "race")

stop.method Balance criteria for tuning

Description

Some methods involve tuning of parameters and use some measure of covariate balance as the
crierion to select the optimal parameter values. For example with method = "gbm", a balance
criterion can be used to select the optimal number of trees to use. In WeightIt, the argument
stop.method controls which criterion is optimized, using the naming conventions originally used
in twang. This page documents the available arguments to stop.method. There has been some
research on which balance criteria perform better than others; see the References section for some
articles. Of course, how each method fares in any given dataset depends on a variety of factors, and
multiple methods should be tried and compared before moving forward with a set of weights.

Each treatment type has its own balance criteria available.

Binary Treatments:
"es.mean", "es.max", "es.rms" The average, maximum, or root mean squared absolute stan-

dardized mean difference (ASMD) among the covariates, respectively. The ASMD is com-
puted using col_w_smd() in cobalt. All covariates are standardized, including binary covari-
ates (note that in cobalt, raw mean differences are used for binary variables by default). The
standardization factor (i.e., s.d.denom) depends on the estimand requested and follows the
conventions used in cobalt.

"ks.mean", "ks.max", "ks.rms" The average, maximum, or root mean squared Kolmogorov-
Smirnov (KS) statistic among the covariates, respectively. The KS statistic is computed using
col_w_ks() in cobalt.

"mahalanobis" The sample Mahalanobis distace in the weighted sample. This is similar to
"es.rms" except that variables that are redundant with each other will be downweighted.
The sample Mahalanobis distance is computed using the (generalized) inverse of the un-
weighted covariance matrix computed in the focal group when the estimand is the ATT or
ATC and using the (generalized) inverse of the average of the unweighted covariance matri-
ces computed within each treatment group (analogous the the ASMD, which uses the average
of the group variances in its denominator).

"energy.dist" The energy distance between the weighted samples, as described by Huling &
Mak (2020). The "improved" energy distance is used when the estimand is not the ATT.
(Note that weights directly minimizing the energy distance can be found using method =
"energy".)
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"r2" The pseudo-R2 of a logistic regression of the treatment on the covariates with the weights
applied. Franklin et al. (2014) consider a similar metric, the post-matching C-statistic, but the
pseduo-R2 accomplishes the same goal without requiring a decision boundary. The pseudo-
R2 used is the McKelvy & Zavoina pseudo-R2.

Multinomial Treatments:

"es.mean", "es.max", "es.rms" The average, maximum, or root mean squared absolute stan-
dardized mean difference (ASMD) among the covariates, respectively, across all pairs of
treatments. The ASMD is computed using col_w_smd() in cobalt. All covariates are stan-
dardized, including binary covariates (note that in cobalt, raw mean differences are used for
binary variables by default). The standardization factor (i.e., s.d.denom) depends on the
estimand requested and follows the conventions used in cobalt. The same standardization
factor is used across treatment pairs for each covariate. When the estimand is the ATT, only
differences between the focal group and each other group are computed.

"ks.mean", "ks.max", "ks.rms" The average, maximum, or root mean squared Kolmogorov-
Smirnov (KS) statistic among the covariates, respectively, across all pairs of treatments. The
KS statistic is computed using col_w_ks() in cobalt. When the estimand is the ATT, only
differences between the focal group and each other group are computed.

"energy.dist" The total energy distance among the weighted samples, as described by Huling
& Mak (2020). The "improved" energy distance is used when the estimand is not the ATT.
(Note that weights directly minimizing the energy distance can be found using method =
"energy".)

Continuous Treatments:

"p.mean", "p.max", "p.rms" The average, maximum, or root mean squared absolute Pearson
correlation between the treatment and covariates, respectively. The Pearson correlation is
computed using col_w_cov() in cobalt. The correlation uses the unweighted standard devi-
ations of the treatment and covariates in the denominator.

"s.mean", "s.max", "s.rms" The average, maximum, or root mean squared absolute Spearman
correlation between the treatment and covariates, respectively. The Spearman correlation
is computed using col_w_cov() in cobalt. The correlation uses the unweighted standard
deviations of the rank-transformed treatment and covariates in the denominator.

"r2" The model R2 of a linear regression of the treatment on the covariates with the weights
applied. The standard R2 is used.

References

Ali, M. S., Groenwold, R. H. H., Pestman, W. R., Belitser, S. V., Roes, K. C. B., Hoes, A. W.,
de Boer, A., & Klungel, O. H. (2014). Propensity score balance measures in pharmacoepidemiol-
ogy: A simulation study. Pharmacoepidemiology and Drug Safety, 23(8), 802–811. doi: 10.1002/
pds.3574

Belitser, S. V., Martens, E. P., Pestman, W. R., Groenwold, R. H. H., de Boer, A., & Klungel, O. H.
(2011). Measuring balance and model selection in propensity score methods. Pharmacoepidemiol-
ogy and Drug Safety, 20(11), 1115–1129. doi: 10.1002/pds.2188

Franklin, J. M., Rassen, J. A., Ackermann, D., Bartels, D. B., & Schneeweiss, S. (2014). Metrics
for covariate balance in cohort studies of causal effects. Statistics in Medicine, 33(10), 1685–1699.
doi: 10.1002/sim.6058

https://doi.org/10.1002/pds.3574
https://doi.org/10.1002/pds.3574
https://doi.org/10.1002/pds.2188
https://doi.org/10.1002/sim.6058
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Huling, J. D., & Mak, S. (2020). Energy Balancing of Covariate Distributions. ArXiv:2004.13962
[Stat]. https://arxiv.org/abs/2004.13962

Griffin, B. A., McCaffrey, D. F., Almirall, D., Burgette, L. F., & Setodji, C. M. (2017). Chasing Bal-
ance and Other Recommendations for Improving Nonparametric Propensity Score Models. Journal
of Causal Inference, 5(2). doi: 10.1515/jci20150026

See Also

method_gbm, method_super, which use these balance criteria.

balance summary in cobalt for details of some calculations.

summary.weightit Print and Summarize Output

Description

summary generates a summary of the weightit or weightitMSM object to evaluate the properties
of the estimated weights. plot plots the distribution of the weights.

Usage

## S3 method for class 'weightit'
summary(object, top = 5,

ignore.s.weights = FALSE, ...)

## S3 method for class 'summary.weightit'
print(x, ...)

## S3 method for class 'summary.weightit'
plot(x, ...)

## S3 method for class 'weightitMSM'
summary(object, top = 5,

ignore.s.weights = FALSE, ...)

## S3 method for class 'summary.weightitMSM'
print(x, ...)

Arguments

object a weightit or weightitMSM object; the output of a call to weightit or weightitMSM.

top how many of the largest and smallest weights to display. Default is 5.
ignore.s.weights

whether or not to ignore sampling weights when computing the weight sum-
mary. If FALSE, the default, the estimated weights will be multiplied by the
sampling weights (if any) before values are computed.

https://arxiv.org/abs/2004.13962
https://doi.org/10.1515/jci-2015-0026
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x a summary.weightit or summary.weightitMSM object; the output of a call to
summary.weightit or summary.weightitMSM.

... for print, arguments passed to print. For plot, additional arguments passed
to hist to determine the number of bins, though geom_histogram from ggplot2
is actually used to create the plot.

Value

For point treatments (i.e., weightit objects), a summary.weightit object with the following ele-
ments:

weight.range The range (minimum and maximum) weight for each treatment group.

weight.top The units with the greatest weights in each treatment group; how many are in-
cluded is determined by top.

coef.of.var (Coef of Var)

The coefficient of variation (standard deviation divided by mean) of the weights
in each treatment group and overall.

scaled.mad (MAD)

The mean absolute deviation of the weights in each treatment group and overall
divided by the mean of the weights in the corresponding group.

negative entropy (Entropy)

The negative entropy (
∑

wlog(w)) of the weights in each treatment group and
overall divided by the mean of the weights in the corresponding group.

num.zeros The number of weights equal to zero.
effective.sample.size

The effective sample size for each treatment group before and after weighting.
See ESS.

For longitudinal treatments (i.e., weightitMSM objects), a list of the above elements for each treat-
ment period.

plot returns a ggplot object with a histogram displaying the distribution of the estimated weights.
If the estimand is the ATT or ATC, only the weights for the non-focal group(s) will be displayed
(since the weights for the focal group are all 1). A dotted line is displayed at the mean of the
weights.

Author(s)

Noah Greifer

See Also

weightit, weightitMSM, summary

Examples

# See example at ?weightit or ?weightitMSM
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trim Trim Large Weights

Description

Trims (i.e., truncates) large weights by setting all weights higher than that at a given quantile to
the weight at the quantile. This can be useful in controlling extreme weights, which can reduce
effective sample size by enlarging the variability of the weights.

Usage

## S3 method for class 'weightit'
trim(w, at = 0, lower = FALSE, ...)

## S3 method for class 'numeric'
trim(w, at = 0, lower = FALSE, treat = NULL, ...)

Arguments

w A weightit object or a vector of weights.
at numeric; either the quantile of the weights above which weights are to be

trimmed. A single number between .5 and 1, or the number of weights to be
trimmed (e.g., at = 3 for the top 3 weights to be set to the 4th largest weight).

lower logical; whether also to trim at the lower quantile (e.g., for at = .9, trimming
at both .1 and .9, or for at = 3, trimming the top and bottom 3 weights).

treat A vector of treatment status for each unit. This should always be included when
w is numeric, but you can get away with leaving it out if the treatment is contin-
uous or the estimand is the ATE for binary or multinomial treatments.

... Not used.

Details

trim takes in a weightit object (the output of a call to weightit or weightitMSM) or a numeric
vector of weights and trims them to the specified quantile. All weights above that quantile are set
to the weight at that quantile. If lower = TRUE, all weights below 1 minus the quantile are to set the
weight at 1 minus the quantile. In general, trimming weights decreases balance but also decreases
the variability of the weights, improving precision at the potential expense of unbiasedness (Cole &
Hernán, 2008). See Lee, Lessler, and Stuart (2011) and Thoemmes and Ong (2015) for discussions
and simulation results of trimming weights at various quantiles. Note that trimming weights can
also change the target population and therefore the estimand.

When using trim on a numeric vector of weights, it is helpful to include the treatment vector as
well. The helps determine the type of treatment and estimand, which are used to specify how
trimming is performed. In particular, if the estimand is determined to be the ATT or ATC, the
weights of the target (i.e., focal) group are ignored, since they should all be equal to 1. Otherwise,
if the estimand is the ATE or the treatment is continuous, all weights are considered for trimming.
In general, weights for any group for which all the weights are the same will not be considered in
the trimming.
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Value

If the input is a weightit object, the output will be a weightit object with the weights replaced
by the trimmed weights, while will have an additional attribute, "trim", equal to the quantile of
trimming.

If the input is a numeric vector of weights, the output will be a numeric vector of the trimmed
weights, again with the aforementioned attribute.

Author(s)

Noah Greifer

References

Cole, S. R., & Hernán, M. Á. (2008). Constructing Inverse Probability Weights for Marginal Struc-
tural Models. American Journal of Epidemiology, 168(6), 656–664.

Lee, B. K., Lessler, J., & Stuart, E. A. (2011). Weight Trimming and Propensity Score Weighting.
PLoS ONE, 6(3), e18174.

Thoemmes, F., & Ong, A. D. (2016). A Primer on Inverse Probability of Treatment Weighting and
Marginal Structural Models. Emerging Adulthood, 4(1), 40–59.

See Also

link{weightit}, link{weightitMSM}

Examples

library("cobalt")
data("lalonde", package = "cobalt")

(W <- weightit(treat ~ age + educ + married +
nodegree + re74, data = lalonde,

method = "ps", estimand = "ATT"))
summary(W)

#Trimming the top and bottom 5 weights
trim(W, at = 5, lower = TRUE)

#Trimming at 90th percentile
(W.trim <- trim(W, at = .9))

summary(W.trim)
#Note that only the control weights were trimmed

#Trimming a numeric vector of weights
all.equal(trim(W$weights, at = .9, treat = lalonde$treat),

W.trim$weights)

#Using made up data and as.weightit()
treat <- rbinom(500, 1, .3)
weights <- rchisq(500, df = 2)
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W <- as.weightit(weights = weights, treat = treat,
estimand = "ATE")

summary(W)
summary(trim(W, at = .95))

weightit Generate Balancing Weights

Description

weightit allows for the easy generation of balancing weights using a variety of available meth-
ods for binary, continuous, and multi-category treatments. Many of these methods exist in other
packages, which weightit calls; these packages must be installed to use the desired method. Also
included are print and summary methods for examining the output.

Usage

weightit(formula,
data = NULL,
method = "ps",
estimand = "ATE",
stabilize = FALSE,
focal = NULL,
by = NULL,
s.weights = NULL,
ps = NULL,
moments = NULL,
int = FALSE,
subclass = NULL,
missing = NULL,
verbose = FALSE,
include.obj = FALSE,
...)

## S3 method for class 'weightit'
print(x, ...)

Arguments

formula a formula with a treatment variable on the left hand side and the covariates to
be balanced on the right hand side. See glm for more details. Interactions and
functions of covariates are allowed.

data an optional data set in the form of a data frame that contains the variables in
formula.

method a string of length 1 containing the name of the method that will be used to
estimate weights. See Details below for allowable options. The default is "ps"
for propensity score weighting.
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estimand the desired estimand. For binary and multi-category treatments, can be "ATE",
"ATT", "ATC", and, for some methods, "ATO", "ATM", or "ATOS". The de-
fault for both is "ATE". This argument is ignored for continuous treatments.
See the individual pages for each method for more information on which es-
timands are allowed with each method and what literature to read to interpret
these estimands.

stabilize logical; whether or not to stabilize the weights. For the methods that involve
estimating propensity scores, this involves multiplying each unit’s weight by
the proportion of units in their treatment group. For the "ebal" method, this
involves using ebalance.trim to reduce the variance of the weights. Default is
FALSE.

focal when multi-category treatments are used and ATT weights are requested, which
group to consider the "treated" or focal group. This group will not be weighted,
and the other groups will be weighted to be more like the focal group. If speci-
fied, estimand will automatically be set to "ATT".

by a string containing the name of the variable in data for which weighting is to
be done within categories or a one-sided formula with the stratifying variable on
the right-hand side. For example, if by = "gender" or by = ~ gender, weights
will be generated separately within each level of the variable "gender". The
argument used to be called exact, which will still work but with a message.
Only one by variable is allowed; to stratify by multiply variables simultaneously,
create a new variable that is a full cross of those variables using interaction.

s.weights A vector of sampling weights or the name of a variable in data that contains
sampling weights. These can also be matching weights if weighting is to be
used on matched data. See the individual pages for each method for information
on whether sampling weights can be supplied.

ps A vector of propensity scores or the name of a variable in data containing
propensity scores. If not NULL, method is ignored, and the propensity scores
will be used to create weights. formula must include the treatment variable in
data, but the listed covariates will play no role in the weight estimation. Using
ps is similar to calling get_w_from_ps directly, but produces a full weightit
object rather than just producing weights.

moments numeric; for some methods, the greatest power of each covariate to be balanced.
For example, if moments = 3, for each non-categorical covariate, the covariate,
its square, and its cube will be balanced. This argument is ignored for other
methods; to balance powers of the covariates, appropriate functions must be
entered in formula. See the individual pages for each method for information
on whether they accept moments.

int logical; for some methods, whether first-order interactions of the covariates
are to be balanced. This argument is ignored for other methods; to balance inter-
actions between the variables, appropriate functions must be entered in formula.
See the individual pages for each method for information on whether they accept
int.

subclass numeric; the number of subclasses to use for computing weights using marginal
mean weighting with subclasses (MMWS). If NULL, standard inverse probabil-
ity weights (and their extensions) will be computed; if a number greater than
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1, subclasses will be formed and weights will be computed based on subclass
membership. Attempting to set a non-NULL value for methods that don’t com-
pute a propensity score will result in an error; see each method’s help page for
information on whether MMWS weights are compatible with the method. See
get_w_from_ps for details and references.

missing character; how missing data should be handled. The options and defaults
depend on the method used. Ignored if no missing data is present. It should
be noted that multiple imputation outperforms all available missingness meth-
ods available in weightit and should probably be used instead. Consider the
MatchThem package for the use of weightit with multiply imputed data.

verbose whether to print additional information output by the fitting function.

include.obj whether to include in the output any fit objects created in the process of estimat-
ing the weights. For example, with method = "ps", the glm objects containing
the propensity score model will be included. See the individual pages for each
method for information on what object will be included if TRUE.

... other arguments for functions called by weightit that control aspects of fitting
that are not covered by the above arguments. See Details.

x a weightit object; the output of a call to weightit.

Details

The primary purpose of weightit is as a dispatcher to functions that perform the estimation of
balancing weights using the requested method. Below are the methods allowed and links to pages
containing more information about them, including additional arguments and outputs (e.g., when
include.obj = TRUE), how missing values are treated, which estimands are allowed, and whether
sampling weights are allowed.

• "ps" - Propensity score weighting using generalized linear models.

• "gbm" - Propensity score weighting using generalized boosted modeling.

• "cbps" - Covariate Balancing Propensity Score weighting.

• "npcbps" - Non-parametric Covariate Balancing Propensity Score weighting.

• "ebal" - Entropy balancing.

• "ebcw" - Empirical balancing calibration weighting.

• "optweight" - Optimization-based weighting.

• "super" - Propensity score weighting using SuperLearner.

• "energy" - Energy balancing.

method can also be supplied as a user-defined function; see method_user for instructions and ex-
amples.

When using weightit, please cite both the WeightIt package (using citation("WeightIt")) and
the paper(s) in the references section of the method used.
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Value

A weightit object with the following elements:

weights The estimated weights, one for each unit.

treat The values of the treatment variable.

covs The covariates used in the fitting. Only includes the raw covariates, which may
have been altered in the fitting process.

estimand The estimand requested.

method The weight estimation method specified.

ps The estimated or provided propensity scores. Estimated propensity scores are
returned for binary treatments and only when method is "ps", "gbm", "cbps",
or "super".

s.weights The provided sampling weights.

focal The focal variable if the ATT was requested with a multi-category treatment.

by A data.frame containing the by variable when specified.

obj When include.obj = TRUE, the fit object.

Author(s)

Noah Greifer

See Also

weightitMSM for estimating weights with sequential (i.e., longitudinal) treatments for use in esti-
mating marginal strcutural models (MSMs).

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "ps", estimand = "ATT"))

summary(W1)
bal.tab(W1)

#Balancing covariates with respect to race (multi-category)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "ebal", estimand = "ATE"))

summary(W2)
bal.tab(W2)

#Balancing covariates with respect to re75 (continuous)
(W3 <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
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method = "cbps", over = FALSE))
summary(W3)
bal.tab(W3)

weightitMSM Generate Balancing Weights for Longitudinal Treatments

Description

weightitMSM allows for the easy generation of balancing weights for marginal structural models
for time-varying treatments using a variety of available methods for binary, continuous, and multi-
nomial treatments. Many of these methods exist in other packages, which weightit calls; these
packages must be installed to use the desired method. Also included are print and summary meth-
ods for examining the output.

Currently only "wide" data sets, where each row corresponds to a unit’s entire variable history, are
supported. You can use reshape or other functions to transform your data into this format; see
example below.

Usage

weightitMSM(formula.list,
data = NULL,
method = "ps",
stabilize = FALSE,
by = NULL,
s.weights = NULL,
num.formula = NULL,
moments = NULL,
int = FALSE,
missing = NULL,
verbose = FALSE,
include.obj = FALSE,
is.MSM.method,
weightit.force = FALSE,
...)

## S3 method for class 'weightitMSM'
print(x, ...)

Arguments

formula.list a list of formulas corresponding to each time point with the time-specific treat-
ment variable on the left hand side and pre-treatment covariates to be balanced
on the right hand side. The formulas must be in temporal order, and must con-
tain all covariates to be balanced at that time point (i.e., treatments and covari-
ates featured in early formulas should appear in later ones). Interactions and
functions of covariates are allowed.
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data an optional data set in the form of a data frame that contains the variables in the
formulas in formula.list. This must be a wide data set with exactly one row
per unit.

method a string of length 1 containing the name of the method that will be used to
estimate weights. See weightit for allowable options. The default is "ps",
which estimates the weights using generalized linear models.

stabilize logical; whether or not to stabilize the weights. Stabilizing the weights in-
volves fitting a model predicting treatment at each time point from treatment
status at prior time points. If TRUE, a saturated model will be fit, essentially us-
ing the observed treatment probabilities in the numerator (for binary and multi-
nomial treatments). This may yield an error if some combinations are not ob-
served. Default is FALSE. To manually specify stabilization model formulas, use
num.formula.

num.formula optional; a one-sided formula with the stabilization factors (other than the pre-
vious treatments) on the right hand side, which adds, for each time point, the
stabilization factors to a model saturated with previous treatments. See Cole &
Hernán (2008) for a discussion of how to specify this model; including stabi-
lization factors can change the estimand without proper adjustment, and should
be done with caution. Unless you know what you are doing, we recommend
setting stabilize = TRUE and ignoring num.formula.

by a string containing the name of the variable in data for which weighting is to
be done within categories or a one-sided formula with the stratifying variable on
the right-hand side. For example, if by = "gender" or by = ~ gender, weights
will be generated separately within each level of the variable "gender". The
argument used to be called exact, which will still work but with a message.
Only one by variable is allowed.

s.weights a vector of sampling weights or the name of a variable in data that contains
sampling weights. These are ignored for some methods.

moments numeric; for some methods, the greatest power of each covariate to be balanced.
For example, if moments = 3, for each non-categorical covariate, the covariate,
its square, and its cube will be balanced. This argument is ignored for other
methods; to balance powers of the covariates, appropriate functions must be
entered in formula. See the specific methods help pages for information on
whether they accept moments.

int logical; for some methods, whether first-order interactions of the covariates
are to be balanced. This argument is ignored for other methods; to balance inter-
actions between the variables, appropriate functions must be entered in formula.
See the specific methods help pages for information on whether they accept int.

missing character; how missing data should be handled. The options and defaults
depend on the method used. Ignored if no missing data is present. It should be
noted that multiple imputation outperforms all available missingness methods
available in weightit and should probably be used instead. See the MatchThem
package for the use of weightit with multiply imputed data.

verbose whether to print additional information output by the fitting function.

include.obj whether to include in the output a list of the fit objects created in the process of
estimating the weights at each time point. For example, with method = "ps", a
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list of the glm objects containing the propensity score models at each time point
will be included. See the help pages for each method for information on what
object will be included if TRUE.

is.MSM.method whether the method estimates weights for multiple time points all at once (TRUE)
or by estimating weights at each time point and then multiplying them together
(FALSE). This is only relevant for method = "optweight"), which estimates
weights for longitudinal treatments all at once, and for user-specified functions.

weightit.force several methods are not valid for estimating weights with longitudinal treat-
ments, and will produce an error message if attempted. Set to TRUE to bypass
this error message.

... other arguments for functions called by weightit that control aspects of fitting
that are not covered by the above arguments. See Details at weightit.

x a weightitMSM object; the output of a call to weightitMSM.

Details

In general, weightitMSM works by separating the estimation of weights into separate procedures
for each time period based on the formulas provided. For each formula, weightitMSM simply calls
weightit to that formula, collects the weights for each time period, and multiplies them together
to arrive at longitudinal balancing weights.

Each formula should contain all the covariates to be balanced on. For example, the formula corre-
sponding to the second time period should contain all the baseline covariates, the treatment variable
at the first time period, and the time-varying covariates that took on values after the first treatment
and before the second. Currently, only wide data sets are supported, where each unit is represented
by exactly one row that contains the covariate and treatment history encoded in separate variables.

The "twang" method, which calls ps in twang, yields the same results to a call to iptw in twang.
However, the cbps method, which calls CBPS in CBPS, will yield different results from CBMSM
in CBPS because CBMSM takes a different approach to generating weights than simply estimating
several time-specific models.

Value

A weightitMSM object with the following elements:

weights The estimated weights, one for each unit.
treat.list A list of the values of the time-varying treatment variables.
covs.list A list of the covariates used in the fitting at each time point. Only includes the

raw covariates, which may have been altered in the fitting process.
data The data.frame originally entered to weightitMSM.
estimand "ATE", currently the only estimand for MSMs with binary or multinomial treat-

ments.
method The weight estimation method specified.
ps.list A list of the estimated propensity scores (if any) at each time point.
s.weights The provided sampling weights.
by A data.frame containing the by variable when specified.
stabilization The stabilization factors, if any.
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Author(s)

Noah Greifer

References

Cole, S. R., & Hernán, M. A. (2008). Constructing Inverse Probability Weights for Marginal Struc-
tural Models. American Journal of Epidemiology, 168(6), 656–664. doi: 10.1093/aje/kwn164

See Also

weightit for information on the allowable methods.

Examples

library("twang")
# library("cobalt")

data("iptwExWide", package = "twang")
(W <- weightitMSM(list(tx1 ~ age + gender + use0,

tx2 ~ tx1 + use1 + age + gender + use0,
tx3 ~ tx2 + use2 + tx1 + use1 + age + gender + use0),

data = iptwExWide,
method = "ps"))

summary(W)
# bal.tab(W)

##Going from long to wide data
data("iptwExLong", package = "twang")
wide_data <- reshape(iptwExLong$covariates, #long data

timevar = "time", #time variable
v.names = c("use", "tx"), #time-varying
idvar = "ID", #time-stable
direction = "wide",
sep = "")

(W2 <- weightitMSM(list(tx1 ~ age + gender + use1,
tx2 ~ tx1 + use2 + age + gender + use1,
tx3 ~ tx2 + use3 + tx1 + use2 + age +

gender + use1),
data = wide_data,
method = "ps"))

summary(W2)

all.equal(W$weights, W2$weights)

https://doi.org/10.1093/aje/kwn164
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npCBPS, 25
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package, 32
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qr, 9

reshape, 60
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stop.method, 21, 23, 36, 37, 50
summary, 53
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summary.weightit, 4, 49, 52
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52
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