Interface to the 'Azure Machine Learning' Software Development Kit ('SDK'). Data scientists can use the 'SDK' to train, deploy, automate, and manage machine learning models on the 'Azure Machine Learning' service. To learn more about 'Azure Machine Learning' visit the website: <https://docs.microsoft.com/en-us/azure/machine-learning/service/overview-what-is-azure-ml>.
Version: | 1.10.0 |
Depends: | R (≥ 3.5.0) |
Imports: | ggplot2, reticulate (≥ 1.12), plyr (≥ 1.8), DT, rstudioapi (≥ 0.7), htmltools, servr, shiny, shinycssloaders |
Suggests: | rmarkdown, knitr, testthat, dplyr, jsonlite, foreach, iterators, utils |
Published: | 2020-09-22 |
Author: | Diondra Peck [cre, aut], Minna Xiao [aut], AzureML R SDK Team [ctb], Microsoft [cph, fnd], Google Inc. [cph] (Examples and Tutorials), The TensorFlow Authors [cph] (Examples and Tutorials), RStudio Inc. [cph] (Examples and Tutorials) |
Maintainer: | Diondra Peck <Diondra.Peck at microsoft.com> |
BugReports: | https://github.com/azure/azureml-sdk-for-r/issues |
License: | MIT + file LICENSE |
URL: | https://github.com/azure/azureml-sdk-for-r |
NeedsCompilation: | no |
Materials: | README |
CRAN checks: | azuremlsdk results |
Reference manual: | azuremlsdk.pdf |
Vignettes: |
Set up an Azure ML workspace Deploy a web service to Azure Kubernetes Service Deploying models A Deeper Dive into Experiments Hyperparameter tune a Keras model Install the Azure ML SDK for R Train and deploy your first model with Azure ML Train a TensorFlow model Known issues and troubleshooting |
Package source: | azuremlsdk_1.10.0.tar.gz |
Windows binaries: | r-devel: azuremlsdk_1.10.0.zip, r-release: azuremlsdk_1.10.0.zip, r-oldrel: azuremlsdk_1.10.0.zip |
macOS binaries: | r-release: azuremlsdk_1.10.0.tgz, r-oldrel: azuremlsdk_1.10.0.tgz |
Old sources: | azuremlsdk archive |
Please use the canonical form https://CRAN.R-project.org/package=azuremlsdk to link to this page.