shinyML
is a Shiny application that helps you to easily compare supervised machine learning regression models. The two main functions of this package are shinyML_regression
and shinyML_classification
which leaves the choice for the user to train and test models on H2O or Spark framework.
Once you get your data stored on a data.table or data.frame object, you can just use one line of code to run shinyML_regression
or shinyML_classification
functions in order to automatically deploy an interactive shiny app. This app can be shared your colleagues if you put share_app
argument to TRUE
and select a port that is free on your server.
library(shinyML)
# An example of regression task
shinyML_regression(data = iris,y = "Petal.Width",framework = "h2o")
# An example of classification task
shinyML_classification(data = iris,y = "Species",framework = "h2o")
Before running machine learning models, it can be useful to inspect the distribution of each variable and to have an insight of dependencies between explanatory variables. BothshinyML_regression
and shinyML_classification
functions allows to check classes of explanatory variables, plot histograms of each distribution and show correlation matrix between all variables. This tabs can be used to determine if some variable are strongly correlated to another and eventually removed from the training phase.You can also plot variation of every variable as a function of another using the “Explore dataset” tab.
Once the shiny app has been launched, you can manually adjust main parameters of regression or classification supervised models (such as generalized linear regression, Logistic regression, Naive Bayes, Random forest, Neural Network, Gradient Boosting …) by moving the corresponding cursors. In addition to hyper-parameters setting for each model, you can adjust train and test period and choose which explanatory variables you want to keep during the training phase.
You can then run each model separately or run all models simultaneously clicking the corresponding button to each box.