bamlss: Bayesian Additive Models for Location, Scale, and Shape (and Beyond)

Infrastructure for estimating probabilistic distributional regression models in a Bayesian framework. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. The conceptual and computational framework is introduced in Umlauf, Klein, Zeileis (2019) <doi:10.1080/10618600.2017.1407325> and the R package in Umlauf, Klein, Simon, Zeileis (2019) <arXiv:1909.11784>.

Version: 1.1-2
Depends: R (≥ 3.5.0), coda, colorspace, mgcv
Imports: Formula, MBA, mvtnorm, sp, Matrix, survival, methods, parallel, raster
Suggests: akima, ff, ffbase, fields, gamlss, geoR, rjags, BayesX, BayesXsrc, R2BayesX, mapdata, maps, maptools, nnet, spatstat, spdep, zoo, keras, splines2, sdPrior, statmod, glogis, glmnet, scoringRules, knitr, MASS
Published: 2020-02-19
Author: Nikolaus Umlauf ORCID iD [aut, cre], Nadja Klein [aut], Achim Zeileis ORCID iD [aut], Meike Koehler [ctb], Thorsten Simon ORCID iD [aut], Stanislaus Stadlmann [ctb]
Maintainer: Nikolaus Umlauf <Nikolaus.Umlauf at>
License: GPL-2 | GPL-3
NeedsCompilation: yes
Citation: bamlss citation info
Materials: NEWS
In views: Bayesian
CRAN checks: bamlss results


Reference manual: bamlss.pdf
Vignettes: First Steps
Package source: bamlss_1.1-2.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release: bamlss_1.1-2.tgz, r-oldrel: bamlss_1.1-2.tgz
Old sources: bamlss archive

Reverse dependencies:

Reverse imports: distreg.vis


Please use the canonical form to link to this page.