It allows you to automatically monitor trends of tweets by time, place and topic aiming at detecting public health threats early through the detection of signals (e.g. an unusual increase in the number of tweets). It was designed to focus on infectious diseases, and it can be extended to all hazards or other fields of study by modifying the topics and keywords.
Version: | 0.1.24 |
Imports: | bit64, dplyr, plyr, DT, httpuv, httr, jsonlite, keyring, emayili, ggplot2, magrittr, parallel, plotly, rtweet, readxl, rgeos, rgdal, rmarkdown, rnaturalearthdata, shiny, sp, stringr, stats, tidyverse, tidytext, tokenizers, tools, utils, xtable, xml2 |
Suggests: | knitr, taskscheduleR |
Published: | 2020-10-23 |
Author: | Francisco Orchard |
Maintainer: | Laura Espinosa <laura.espinosa at ecdc.europa.eu> |
BugReports: | https://github.com/EU-ECDC/epitweetr/issues |
License: | EUPL |
URL: | https://github.com/EU-ECDC/epitweetr |
NeedsCompilation: | no |
CRAN checks: | epitweetr results |
Reference manual: | epitweetr.pdf |
Vignettes: |
epitweetr: user documentation |
Package source: | epitweetr_0.1.24.tar.gz |
Windows binaries: | r-devel: epitweetr_0.1.24.zip, r-release: epitweetr_0.1.24.zip, r-oldrel: epitweetr_0.1.24.zip |
macOS binaries: | r-release: epitweetr_0.1.24.tgz, r-oldrel: epitweetr_0.1.24.tgz |
Old sources: | epitweetr archive |
Please use the canonical form https://CRAN.R-project.org/package=epitweetr to link to this page.