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2 FLXMCvMF

FLXMCvMF Flexmix Driver for Mixtures of von Mises-Fisher Distributions

Description

This driver for flexmix implements estimation of mixtures of von Mises-Fisher distributions where
the data can be stored in a dense or a simple triplet matrix (package slam) format.

Usage

FLXMCvMF(formula = . ~ ., kappa = NULL)

Arguments

formula a formula which is interpreted relative to the formula specified in the call to
flexmix using update.formula. Only the left-hand side (response) of the for-
mula is used. Default is to use the original flexmix model formula.

kappa see the control argument of movMF.

Value

An object of class "FLXMCvMF".

Author(s)

Bettina Grün

Examples

if (requireNamespace("flexmix", quietly = TRUE)) {
## Generate and fit a "small-mix" data set a la Banerjee et al.
mu <- rbind(c(-0.251, -0.968),

c(0.399, 0.917))
kappa <- c(4, 4)
theta <- kappa * mu
theta
alpha <- c(0.48, 0.52)
## Generate a sample of size n = 50 from the von Mises-Fisher mixture
## with the above parameters.
set.seed(123)
x <- rmovMF(50, theta, alpha)
## Fit a von Mises-Fisher mixture with the "right" number of components,
## using 10 EM runs.
set.seed(123)
y2 <- flexmix::stepFlexmix(x ~ 1, k = 2, model = FLXMCvMF(), verbose = FALSE)
## Inspect the fitted parameters:
y2
## Compare the fitted classes to the true ones:
table(True = attr(x, "z"), Fitted = flexmix::clusters(y2))
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## To use a common kappa:
y2cv <- flexmix::stepFlexmix(x ~ 1, k = 2,

model = FLXMCvMF(kappa = list(common = TRUE)), verbose = FALSE)
## To use a common kappa fixed to the true value of 4:
y2cf <- flexmix::stepFlexmix(x ~ 1, k = 2,

model = FLXMCvMF(kappa = 4), verbose = FALSE)
## Comparing solutions via BIC:
sapply(list(y2, y2cf, y2cv), BIC)
## Use a different kappa solver:
set.seed(123)
y2a <- flexmix::stepFlexmix(x ~ 1, k = 2,

model = FLXMCvMF(kappa = "uniroot"), verbose = FALSE)
y2a
## Using a sparse matrix:
x <- slam::as.simple_triplet_matrix(x)
y2 <- flexmix::stepFlexmix(x ~ 1, k = 2,

model = FLXMCvMF(), verbose = FALSE)
}

movMF Fit Mixtures of von Mises-Fisher Distributions

Description

Fit mixtures of von Mises-Fisher distributions.

Usage

movMF(x, k, control = list(), ...)

Arguments

x a numeric data matrix, with rows corresponding to observations. Standardized
to unit row lengths if necessary. Can be a dense matrix, a simple triplet matrix
(package slam), or a dgTMatrix (package Matrix).

k an integer giving the desired number of mixture components (classes).

control a list of control parameters. See Details.

... a list of control parameters (overriding those specified in control).

Details

movMF returns an object of class "movMF" representing the fitted mixture of von Mises-Fisher dis-
tributions model. Available methods for such objects include coef, logLik, print and predict.
predict has an extra type argument with possible values "class_ids" (default) and "memberships"
for indicating hard or soft prediction, respectively.

The mixture of von Mises-Fisher distributions is fitted using EM variants as specified by control
option E (specifying the E-step employed), with possible values "softmax" (default), "hardmax" or
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"stochmax" where the first two implement algorithms soft-moVMF and hard-moVMF of Banerjee
et al (2005). For "stochmax", class assignments are drawn from the posteriors for each observation
in the E-step as outlined as SEM in Celeux and Govaert (1992). The stopping criterion for this
algorithm is by default changed to not check for convergence (logical control option converge),
but to return the parameters with the maximum likelihood encountered. E may be abbreviated.

In the M-step, the parameters θ of the respective component distributions are estimated via maxi-
mum likelihood, which is accomplished by taking θ proportional to suitable weighted sample means
x̄, with length κ solving the equation Ad(κ) = ‖x̄‖, where Ad(κ) = Id/2(κ)/Id/2−1(κ) with I the
modified Bessel function of the first kind. Via control argument kappa, one can specify how to
(approximately) solve these equations, and whether a common (possibly given) length κ should be
employed. If kappa is a number, it gives a common length to be employed. If it is a character string,
it specifies the method to be used for solving the κ equation. The possible methods are:

"Banerjee_et_al_2005" uses the approximation of Banerjee et al (2005).

"Tanabe_et_al_2007" uses the fixed-point iteration of Tanabe et al (2007) with starting point for
κ in the interval established by Tanabe et al (2007) implied by a given c with values in [0, 2].
The default is c = 1, the mid-point of the interval.

"Sra_2012" uses two Newton steps as suggested in Sra (2012) starting in the approximation of
Banerjee et al (2005).

"Song_et_al_2012" uses two Halley steps as suggested in Song et al (2012) starting in the ap-
proximation of Banerjee et al (2005).

"uniroot" uses a straightforward call to uniroot with the bounds established in Hornik and Grün
(2014).

"Newton" uses a full Newton algorithm started in the approximation of Hornik and Grün (2014).

"Halley" uses a full Halley algorithm started in the approximation of Hornik and Grün (2014).

"hybrid" implements a combination of a derivative-based step (Newton or Halley) and a bisection
step as outlined in Press et al. (2002). The derivative-based step can be specified via the
argument step which expects a function performing this step. Currently step_Newton and
step_Halley (default) are available.

"Newton_Fourier" (default) uses a variant of the Newton-Fourier method for strictly increasing
concave functions as for example given in Atkinson (1989, pp. 62–64). Concavity can be
established using Hornik and Grün (2013).

The lower-cased version of the given kappa specification is matched against the lower-cased names
of the available methods using pmatch. Finally, to indicate using a common (but not given) κ for
all component distributions, kappa should be a list with element common = TRUE (and optionally a
character string giving the estimation method).

Additional control parameters are as follows.

maxiter an integer giving the maximal number of EM iterations to be performed. Default: 100.

reltol the minimum relative improvement of the objective function per iteration. If improvement
is less, the EM algorithm will stop under the assumption that no further significant improve-
ment can be made. Defaults to sqrt(.Machine$double.eps).

ids either a vector of class memberships or TRUE which implies that the class memberships are
obtained from the attribute named "z" of the input data; these class memberships are used for
initializing the EM algorithm and the algorithm is stopped after the first iteration.
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start a specification of the starting values to be employed. Can be a list of matrices giving the
memberships of objects to components, or of vectors giving component ids (numbers from 1
to the given k). Can also be a character vector with elements "i" (randomly pick component
ids for the observations), or one of "p", "S" or "s". The latter first determine component “pro-
totypes”, and then determine an optimal “fuzzy” membership matrix from the implied cosine
dissimilarities between observations and prototypes. Prototypes are obtained as follows: for
"p", observations are randomly picked. For "S", one takes the first prototype to minimize
total cosine dissimilarity to the observations, and then successively picks observations farthest
away from the already picked prototypes. For "s", one takes a randomly chosen observation
as the first prototype, and then proceeds as for "S".
By default, initialization method "p" is used.
If several starting values are specified, the EM algorithm is performed individually to each
starting value, and the best solution found is returned.

nruns an integer giving the number of EM runs to be performed. Default: 1. Only used if start
is not given.

minalpha a numeric indicating the minimum prior probability. Components falling below this
threshold are removed during the iteration. If ≥ 1, this is taken as the minimal number of
observations in a component. Default: 0.

converge a logical, if TRUE the EM algorithm is stopped if the reltol criterion is met and the cur-
rent parameter estimate is returned. If FALSE the EM algorithm is run for maxiter iterations
and the parametrizations with the maximum likelihood encountered during the EM algorithm
is returned. Default: TRUE, changed to FALSE if E="stochmax".

verbose a logical indicating whether to provide some output on algorithmic progress. Defaults to
getOption("verbose").

One popular application context of mixtures of von Mises-Fisher distributions is text mining, where
the data matrices are typically very large and sparse. The provided implementation should be able to
handle such large corpora with reasonable efficiency by employing suitable sparse matrix represen-
tations and computations. In addition, straightforward computations of the normalizing constants in
the von Mises-Fisher densities (see movMF_distribution) by directly employing the modified Bessel
functions of the first kind are computationally infeasible for large d (dimension of the observations)
and/or values of the parameter lengths κ. Instead, we use suitably scaled hypergeometric-type
power series for computing (the logarithms of) the normalizing constants.

Value

An object of class "movMF" representing the fitted mixture of von Mises-Fisher distributions, which
is a list containing at least the following components:

theta a matrix with rows giving the fitted parameters of the mixture components.

alpha a numeric vector with the fitted mixture probabilities.

See vMF for the employed parametrization of the von Mises-Fisher distribution.

References

K. E. Atkinson (1989). An Introduction to Numerical Analysis. 2nd edition. John Wiley & Sons.



6 movMF

A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra (2005). Clustering on the unit hypersphere using
von Mises-Fisher distributions. Journal of Machine Learning Research, 6, 1345–1382. https:
//jmlr.csail.mit.edu/papers/v6/banerjee05a.html.

G. Celeux, and G. Govaert (1992). A classification EM algorithm for clustering and two stochastic
versions. Computational Statistics & Data Analysis, 14, 315–332. doi: 10.1016/01679473(92)90042-
E.

K. Hornik, and B. Grün (2013). Amos-type bounds for modified Bessel function ratios. Journal of
Mathematical Analysis and Applications, 408(1), 91–101. doi: 10.1016/j.jmaa.2013.05.070.

K. Hornik, and B. Grün (2014). On maximum likelihood estimation of the concentration parameter
of von Mises-Fisher distributions. Computational Statistics, 29, 945–957. doi: 10.1007/s00180-
01304710.

W. H. Press, S. A. Teukolsky, W. T. Vetterling and Brian P. Flannery (2002). Numerical Recipes in
C: The Art of Scientific Computing. 2nd edition. Cambridge University Press.

H. Song, J. Liu, and G. Wang. High-order parameter approximation for von Mises-Fisher distribu-
tions. Applied Mathematics and Computation, 218, 11880–11890. doi: 10.1016/j.amc.2012.05.050.

S. Sra (2012). A short note on parameter approximation for von Mises-Fisher distributions: and
a fast implementation of Is(x). Computational Statistics, 27, 177–190. doi: 10.1007/s00180011-
0232x.

A. Tanabe, K. Fukumizu, S. Oba, T. Takenouchi, and S. Ishii. Parameter estimation for von Mises-
Fisher distributions. Computational Statistics, 22, 145–157. doi: 10.1007/s0018000700307.

Examples

## Generate and fit a "small-mix" data set a la Banerjee et al.
mu <- rbind(c(-0.251, -0.968),

c(0.399, 0.917))
kappa <- c(4, 4)
theta <- kappa * mu
theta
alpha <- c(0.48, 0.52)
## Generate a sample of size n = 50 from the von Mises-Fisher mixture
## with the above parameters.
set.seed(123)
x <- rmovMF(50, theta, alpha)
## Fit a von Mises-Fisher mixture with the "right" number of components,
## using 10 EM runs.
set.seed(123)
y2 <- movMF(x, 2, nruns = 10)
## Inspect the fitted parameters:
y2
## Compare the fitted classes to the true ones:
table(True = attr(x, "z"), Fitted = predict(y2))
## To use a common kappa:
y2cv <- movMF(x, 2, nruns = 10, kappa = list(common = TRUE))
## To use a common kappa fixed to the true value of 4:
y2cf <- movMF(x, 2, nruns = 10, kappa = 4)
## Comparing solutions via BIC:
sapply(list(y2, y2cf, y2cv), BIC)
## Use a different kappa solver:

https://jmlr.csail.mit.edu/papers/v6/banerjee05a.html
https://jmlr.csail.mit.edu/papers/v6/banerjee05a.html
https://doi.org/10.1016/0167-9473(92)90042-E
https://doi.org/10.1016/0167-9473(92)90042-E
https://doi.org/10.1016/j.jmaa.2013.05.070
https://doi.org/10.1007/s00180-013-0471-0
https://doi.org/10.1007/s00180-013-0471-0
https://doi.org/10.1016/j.amc.2012.05.050
https://doi.org/10.1007/s00180-011-0232-x
https://doi.org/10.1007/s00180-011-0232-x
https://doi.org/10.1007/s00180-007-0030-7


movMF_distribution 7

set.seed(123)
y2a <- movMF(x, 2, nruns = 10, kappa = "uniroot")
y2a

movMF_distribution Mixtures of von Mises-Fisher Distributions

Description

Density and random number generation for finite mixtures of von Mises-Fisher distributions.

Usage

dmovMF(x, theta, alpha = 1, log = FALSE)
rmovMF(n, theta, alpha = 1)

Arguments

x a matrix of rows of points on the unit hypersphere. Standardized to unit row
length if necessary.

theta a matrix with rows giving the parameters of the mixture components.

alpha a numeric vector with non-negative elements giving the mixture probabilities.
Standardized to sum to one if necessary.

log a logical; if TRUE log-densities are computed.

n an integer giving the number of samples to draw.

Details

A random d-dimensional unit length vector x has a von Mises-Fisher (or Langevin, short: vMF)
distribution with parameter θ if its density with respect to the uniform distribution on the unit hy-
persphere is given by

f(x|θ) = exp(θ′x)/0F1(; d/2; ‖θ‖2/4),

where 0F1 is a generalized hypergeometric function (e.g., https://en.wikipedia.org/wiki/
Generalized_hypergeometric_function) and related to the modified Bessel function Iν of the
first kind via

0F1(; ν + 1; z2/4) = Iν(z)Γ(ν + 1)/(z/2)ν .

With this parametrization, the von Mises-Fisher family is the natural exponential family through the
uniform distribution on the unit sphere, with cumulant transform

M(θ) = log(0F1(; d/2; ‖θ‖2/4)).

We note that the vMF distribution is commonly parametrized by the mean direction parameter µ =
θ/‖θ‖ (which however is not well-defined if θ = 0) and the concentration parameter κ = ‖θ‖, e.g.,
https://en.wikipedia.org/wiki/Von_Mises%E2%80%93Fisher_distribution (which also uses
the un-normalized Haar measure on the unit sphere as the reference distribution, and hence includes
the “area” of the unit sphere as an additional normalizing constant).

https://en.wikipedia.org/wiki/Generalized_hypergeometric_function
https://en.wikipedia.org/wiki/Generalized_hypergeometric_function
https://en.wikipedia.org/wiki/Von_Mises%E2%80%93Fisher_distribution
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dmovMF computes the (log) density of mixtures of vMF distributions.

rmovMF generates samples from finite mixtures of vMF distributions, using Algorithm VM* in
Wood (1994) for sampling from the vMF distribution.

Arguments theta and alpha are recycled to a common number of mixture components.

Value

For dmovMF, a numeric vector of (log) density values.

For rmovMF, a matrix with n unit length rows representing the samples from the vMF mixture
distribution.

References

A. T. A. Wood (1994). Simulation of the von Mises Fisher distribution. Communications in Statis-
tics – Simulation and Computation, 23(1), 157–164.

Examples

## To simulate from the vMF distribution with mean direction
## proportional to c(1, -1) and concentration parameter 3:
rmovMF(10, 3 * c(1, -1) / sqrt(2))
## To simulate from a mixture of vMF distributions with mean direction
## parameters c(1, 0) and c(0, 1), concentration parameters 3 and 4, and
## mixture probabilities 1/3 and 2/3, respectively:
rmovMF(10, c(3, 4) * rbind(c(1, 0), c(0, 1)), c(1, 2))
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