Implements a maximum likelihood estimation (MLE) method for estimation and prediction of Gaussian process-based spatially varying coefficient (SVC) models (Dambon et al. (2021a) <doi:10.1016/j.spasta.2020.100470>). Covariance tapering (Furrer et al. (2006) <doi:10.1198/106186006X132178>) can be applied such that the method scales to large data. Further, it implements a joint variable selection of the fixed and random effects (Dambon et al. (2021b) <arXiv:2101.01932>).
Version: | 0.3.0 |
Depends: | R (≥ 3.5.0), spam |
Imports: | DiceKriging, glmnet, lhs, mlr, mlrMBO, RandomFields, optimParallel (≥ 0.8-1), ParamHelpers, pbapply, smoof, sp |
Suggests: | gstat, knitr, microbenchmark, parallel, rmarkdown, R.rsp, spData |
Published: | 2021-01-13 |
Author: | Jakob A. Dambon |
Maintainer: | Jakob A. Dambon <jakob.dambon at math.uzh.ch> |
BugReports: | https://github.com/jakobdambon/varycoef/issues |
License: | GPL-2 |
URL: | https://github.com/jakobdambon/varycoef |
NeedsCompilation: | no |
Citation: | varycoef citation info |
CRAN checks: | varycoef results |
Reference manual: | varycoef.pdf |
Vignettes: |
Manual First Example |
Package source: | varycoef_0.3.0.tar.gz |
Windows binaries: | r-devel: varycoef_0.3.0.zip, r-release: varycoef_0.3.0.zip, r-oldrel: varycoef_0.3.0.zip |
macOS binaries: | r-release: varycoef_0.3.0.tgz, r-oldrel: varycoef_0.3.0.tgz |
Old sources: | varycoef archive |
Please use the canonical form https://CRAN.R-project.org/package=varycoef to link to this page.