
A Handbook of Statistical Analyses
Using R — 2nd Edition

Brian S. Everitt and Torsten Hothorn

CHAPTER 8

Density Estimation: Erupting Geysers
and Star Clusters

8.1 Introduction

8.2 Density Estimation

The three kernel functions are implemented in R as shown in lines 1–3 of
Figure 8.1. For some grid x, the kernel functions are plotted using the R

statements in lines 5–11 (Figure 8.1).

The kernel estimator f̂ is a sum of ‘bumps’ placed at the observations.
The kernel function determines the shape of the bumps while the window
width h determines their width. Figure 8.2 (redrawn from a similar plot in
Silverman, 1986) shows the individual bumps n−1h−1K((x−xi)/h), as well as

the estimate f̂ obtained by adding them up for an artificial set of data points

R> x <- c(0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5)

R> n <- length(x)

For a grid

R> xgrid <- seq(from = min(x) - 1, to = max(x) + 1, by = 0.01)

on the real line, we can compute the contribution of each measurement in x,
with h = 0.4, by the Gaussian kernel (defined in Figure 8.1, line 3) as follows;

R> h <- 0.4

R> bumps <- sapply(x, function(a) gauss((xgrid - a)/h)/(n * h))

A plot of the individual bumps and their sum, the kernel density estimate f̂ ,
is shown in Figure 8.2.

8.3 Analysis Using R

8.3.1 A Parametric Density Estimate for the Old Faithful Data

R> logL <- function(param, x) {

+ d1 <- dnorm(x, mean = param[2], sd = param[3])

+ d2 <- dnorm(x, mean = param[4], sd = param[5])

+ -sum(log(param[1] * d1 + (1 - param[1]) * d2))

+ }

R> startparam <- c(p = 0.5, mu1 = 50, sd1 = 3, mu2 = 80, sd2 = 3)

R> opp <- optim(startparam, logL, x = faithful$waiting,

3

4 DENSITY ESTIMATION

1 R> rec <- function(x) (abs(x) < 1) * 0.5

2 R> tri <- function(x) (abs(x) < 1) * (1 - abs(x))

3 R> gauss <- function(x) 1/sqrt(2*pi) * exp(-(x^2)/2)

4 R> x <- seq(from = -3, to = 3, by = 0.001)

5 R> plot(x, rec(x), type = "l", ylim = c(0,1), lty = 1,

6 + ylab = expression(K(x)))

7 R> lines(x, tri(x), lty = 2)

8 R> lines(x, gauss(x), lty = 3)

9 R> legend(-3, 0.8, legend = c("Rectangular", "Triangular",

10 + "Gaussian"), lty = 1:3, title = "kernel functions",

11 + bty = "n")

Figure 8.1 Three commonly used kernel functions.

ANALYSIS USING R 5

1 R> plot(xgrid, rowSums(bumps), ylab = expression(hat(f)(x)),

2 + type = "l", xlab = "x", lwd = 2)

3 R> rug(x, lwd = 2)

4 R> out <- apply(bumps, 2, function(b) lines(xgrid, b))

−1 0 1 2 3 4

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0
0

.3
5

x

f^ (x
)

Figure 8.2 Kernel estimate showing the contributions of Gaussian kernels evalu-
ated for the individual observations with bandwidth h = 0.4.

+ method = "L-BFGS-B",

+ lower = c(0.01, rep(1, 4)),

+ upper = c(0.99, rep(200, 4)))

R> opp

$par

p mu1 sd1 mu2 sd2

0.361 54.612 5.872 80.093 5.867

$value

[1] 1034

$counts

6 DENSITY ESTIMATION

R> epa <- function(x, y)

+ ((x^2 + y^2) < 1) * 2/pi * (1 - x^2 - y^2)

R> x <- seq(from = -1.1, to = 1.1, by = 0.05)

R> epavals <- sapply(x, function(a) epa(a, x))

R> persp(x = x, y = x, z = epavals, xlab = "x", ylab = "y",

+ zlab = expression(K(x, y)), theta = -35, axes = TRUE,

+ box = TRUE)

x

y

K
(x

, y
)

Figure 8.3 Epanechnikov kernel for a grid between (−1.1,−1.1) and (1.1, 1.1).

ANALYSIS USING R 7

1 R> data("faithful", package = "datasets")

2 R> x <- faithful$waiting

3 R> layout(matrix(1:3, ncol = 3))

4 R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",

5 + probability = TRUE, main = "Gaussian kernel",

6 + border = "gray")

7 R> lines(density(x, width = 12), lwd = 2)

8 R> rug(x)

9 R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",

10 + probability = TRUE, main = "Rectangular kernel",

11 + border = "gray")

12 R> lines(density(x, width = 12, window = "rectangular"), lwd = 2)

13 R> rug(x)

14 R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",

15 + probability = TRUE, main = "Triangular kernel",

16 + border = "gray")

17 R> lines(density(x, width = 12, window = "triangular"), lwd = 2)

18 R> rug(x)

Gaussian kernel

Waiting times (in min.)

F
re

q
u

e
n

c
y

40 60 80 100

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Rectangular kernel

Waiting times (in min.)

F
re

q
u

e
n

c
y

40 60 80 100

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Triangular kernel

Waiting times (in min.)

F
re

q
u

e
n

c
y

40 60 80 100

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Figure 8.4 Density estimates of the geyser eruption data imposed on a histogram
of the data.

8 DENSITY ESTIMATION

R> library("KernSmooth")

R> data("CYGOB1", package = "HSAUR2")

R> CYGOB1d <- bkde2D(CYGOB1, bandwidth = sapply(CYGOB1, dpik))

R> contour(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat,

+ xlab = "log surface temperature",

+ ylab = "log light intensity")

log surface temperature

lo
g

 l
ig

h
t

in
te

n
s
it
y

 0.2

 0.2

 0.2

 0.2

 0.4

 0.4

 0.6

 0.6

 0.8
 1

 1.2

 1.4

 1.6

 1
.8

 2

 2
.2

3.4 3.6 3.8 4.0 4.2 4.4 4.6

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

Figure 8.5 A contour plot of the bivariate density estimate of the CYGOB1 data,
i.e., a two-dimensional graphical display for a three-dimensional prob-
lem.

ANALYSIS USING R 9

R> persp(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat,

+ xlab = "log surface temperature",

+ ylab = "log light intensity",

+ zlab = "estimated density",

+ theta = -35, axes = TRUE, box = TRUE)

log surfa
ce te

mperature

log light intensity

e
s
tim

a
te

d
 d

e
n
s
ity

Figure 8.6 The bivariate density estimate of the CYGOB1 data, here shown in a
three-dimensional fashion using the persp function.

function gradient

55 55

$convergence

[1] 0

Of course, optimising the appropriate likelihood ‘by hand’ is not very con-
venient. In fact, (at least) two packages offer high-level functionality for esti-
mating mixture models. The first one is package mclust (Fraley et al., 2012)
implementing the methodology described in Fraley and Raftery (2002). Here,

10 DENSITY ESTIMATION

a Bayesian information criterion (BIC) is applied to choose the form of the
mixture model:

R> library("mclust")

R> mc <- Mclust(faithful$waiting)

R> mc

'Mclust' model object: (E,2)

Available components:

[1] "call" "data" "modelName"

[4] "n" "d" "G"

[7] "BIC" "loglik" "df"

[10] "bic" "icl" "hypvol"

[13] "parameters" "z" "classification"

[16] "uncertainty"

and the estimated means are

R> mc$parameters$mean

1 2

54.6 80.1

with estimated standard deviation (found to be equal within both groups)

R> sqrt(mc$parameters$variance$sigmasq)

[1] 5.87

The proportion is p̂ = 0.36. The second package is called flexmix whose func-
tionality is described by Leisch (2004). A mixture of two normals can be fitted
using

R> library("flexmix")

R> fl <- flexmix(waiting ~ 1, data = faithful, k = 2)

with p̂ = 0.52 and estimated parameters

R> parameters(fl, component = 1)

Comp.1

coef.(Intercept) 70.8

sigma 13.6

R> parameters(fl, component = 2)

Comp.2

coef.(Intercept) 71.0

sigma 13.6

We can get standard errors for the five parameter estimates by using a
bootstrap approach (see Efron and Tibshirani, 1993). The original data are
slightly perturbed by drawing n out of n observations with replacement and
those artificial replications of the original data are called bootstrap samples.
Now, we can fit the mixture for each bootstrap sample and assess the vari-
ability of the estimates, for example using confidence intervals. Some suitable
R code based on the Mclust function follows. First, we define a function that,
for a bootstrap sample indx, fits a two-component mixture model and returns
p̂ and the estimated means (note that we need to make sure that we always
get an estimate of p, not 1− p):

ANALYSIS USING R 11

R> opar <- as.list(opp$par)

R> rx <- seq(from = 40, to = 110, by = 0.1)

R> d1 <- dnorm(rx, mean = opar$mu1, sd = opar$sd1)

R> d2 <- dnorm(rx, mean = opar$mu2, sd = opar$sd2)

R> f <- opar$p * d1 + (1 - opar$p) * d2

R> hist(x, probability = TRUE, xlab = "Waiting times (in min.)",

+ border = "gray", xlim = range(rx), ylim = c(0, 0.06),

+ main = "")

R> lines(rx, f, lwd = 2)

R> lines(rx, dnorm(rx, mean = mean(x), sd = sd(x)), lty = 2,

+ lwd = 2)

R> legend(50, 0.06, lty = 1:2, bty = "n",

+ legend = c("Fitted two-component mixture density",

+ "Fitted single normal density"))

Waiting times (in min.)

D
e

n
s
it
y

40 50 60 70 80 90 100 110

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

0
.0

6

Fitted two−component mixture density

Fitted single normal density

Figure 8.7 Fitted normal density and two-component normal mixture for geyser
eruption data.

12 DENSITY ESTIMATION

R> library("boot")

R> fit <- function(x, indx) {

+ a <- Mclust(x[indx], minG = 2, maxG = 2,

+ modelNames="E")$parameters

+ if (a$pro[1] < 0.5)

+ return(c(p = a$pro[1], mu1 = a$mean[1],

+ mu2 = a$mean[2]))

+ return(c(p = 1 - a$pro[1], mu1 = a$mean[2],

+ mu2 = a$mean[1]))

+ }

The function fit can now be fed into the boot function (Canty and Ripley,
2012) for bootstrapping (here 1000 bootstrap samples are drawn)

R> bootpara <- boot(faithful$waiting, fit, R = 1000)

We assess the variability of our estimates p̂ by means of adjusted bootstrap
percentile (BCa) confidence intervals, which for p̂ can be obtained from

R> boot.ci(bootpara, type = "bca", index = 1)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = bootpara, type = "bca", index = 1)

Intervals :

Level BCa

95% (0.304, 0.423)

Calculations and Intervals on Original Scale

We see that there is a reasonable variability in the mixture model; however,
the means in the two components are rather stable, as can be seen from

R> boot.ci(bootpara, type = "bca", index = 2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = bootpara, type = "bca", index = 2)

Intervals :

Level BCa

95% (53.4, 56.1)

Calculations and Intervals on Original Scale

for µ̂1 and for µ̂2 from

R> boot.ci(bootpara, type = "bca", index = 3)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = bootpara, type = "bca", index = 3)

Intervals :

Level BCa

95% (79, 81)

Calculations and Intervals on Original Scale

ANALYSIS USING R 13

Finally, we show a graphical representation of both the bootstrap distribu-
tion of the mean estimates and the corresponding confidence intervals. For
convenience, we define a function for plotting, namely

R> bootplot <- function(b, index, main = "") {

+ dens <- density(b$t[,index])

+ ci <- boot.ci(b, type = "bca", index = index)$bca[4:5]

+ est <- b$t0[index]

+ plot(dens, main = main)

+ y <- max(dens$y) / 10

+ segments(ci[1], y, ci[2], y, lty = 2)

+ points(ci[1], y, pch = "(")

+ points(ci[2], y, pch = ")")

+ points(est, y, pch = 19)

+ }

The element t of an object created by boot contains the bootstrap replica-
tions of our estimates, i.e., the values computed by fit for each of the 1000
bootstrap samples of the geyser data. First, we plot a simple density esti-
mate and then construct a line representing the confidence interval. We apply
this function to the bootstrap distributions of our estimates µ̂1 and µ̂2 in
Figure 8.8.

14 DENSITY ESTIMATION

R> layout(matrix(1:2, ncol = 2))

R> bootplot(bootpara, 2, main = expression(mu[1]))

R> bootplot(bootpara, 3, main = expression(mu[2]))

52 54 56

0
.0

0
.2

0
.4

0
.6

µ1

N = 1000 Bandwidth = 0.1489

D
e

n
s
it
y

()

78 79 80 81 82

0
.0

0
.2

0
.4

0
.6

0
.8

µ2

N = 1000 Bandwidth = 0.111

D
e

n
s
it
y

()

Figure 8.8 Bootstrap distribution and confidence intervals for the mean estimates
of a two-component mixture for the geyser data.

Bibliography

Canty, A. and Ripley, B. D. (2012), boot: Bootstrap R (S-PLUS) Functions,
URL http://CRAN.R-project.org/package=boot, R package version 1.3-
7.

Efron, B. and Tibshirani, R. J. (1993), An Introduction to the Bootstrap,
London, UK: Chapman & Hall/CRC.

Fraley, C. and Raftery, A. E. (2002), “Model-based clustering, discriminant
analysis, and density estimation,” Journal of the American Statistical As-
sociation, 97, 611–631.

Fraley, C., Raftery, A. E., and Wehrens, R. (2012), mclust: Model-based Clus-
ter Analysis, URL http://www.stat.washington.edu/mclust, R package
version 3.4.11.

Leisch, F. (2004), “FlexMix: A general framework for finite mixture models
and latent class regression in R,” Journal of Statistical Software, 11, URL
http://www.jstatsoft.org/v11/i08/.

Silverman, B. (1986), Density Estimation, London, UK: Chapman &
Hall/CRC.

http://CRAN.R-project.org/package=boot
http://www.stat.washington.edu/mclust
http://www.jstatsoft.org/v11/i08/

	Density Estimation
	Introduction
	Density Estimation
	Analysis Using R

