Maximum likelihood estimation of random utility discrete choice models. The software is described in Croissant (2020) <doi:10.18637/jss.v095.i11> and the underlying methods in Train (2009) <doi:10.1017/CBO9780511805271>.
Version: | 1.1-1 |
Depends: | R (≥ 2.10), dfidx |
Imports: | Formula, zoo, lmtest, statmod, MASS, Rdpack |
Suggests: | knitr, car, nnet, lattice, AER, ggplot2, texreg, rmarkdown |
Published: | 2020-10-02 |
Author: | Yves Croissant [aut, cre] |
Maintainer: | Yves Croissant <yves.croissant at univ-reunion.fr> |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | https://cran.r-project.org/package=mlogit, https://r-forge.r-project.org/projects/mlogit/ |
NeedsCompilation: | no |
Citation: | mlogit citation info |
Materials: | NEWS |
In views: | Econometrics, SocialSciences |
CRAN checks: | mlogit results |
Reference manual: | mlogit.pdf |
Vignettes: |
2. Data management, model description and testing 3. Random utility model and the multinomial logit model 4. Logit models relaxing the iid hypothesis 5. The random parameters (or mixed) logit model 6. The multinomial probit model 7. Miscellaneous models Exercise 1: Multinomial logit model Exercise 2: Nested logit model Exercise 3: Mixed logit model Exercise 4: Multinomial probit mlogit |
Package source: | mlogit_1.1-1.tar.gz |
Windows binaries: | r-devel: mlogit_1.1-1.zip, r-release: mlogit_1.1-1.zip, r-oldrel: mlogit_1.1-1.zip |
macOS binaries: | r-release: mlogit_1.1-1.tgz, r-oldrel: mlogit_1.1-1.tgz |
Old sources: | mlogit archive |
Reverse depends: | covLCA, mpbart, nopp, PHInfiniteEstimates, Ravages |
Reverse imports: | clusterSEs, Demerelate, gmnl, idefix, misclassGLM, mnlogit, nmm, riskclustr |
Reverse suggests: | AER, broom, catdata, catspec, cobalt, dfidx, generalhoslem, insight, mixl, mlogitBMA, nonnest2, performance, plot3logit, support.BWS, urbin, WeightIt |
Reverse enhances: | prediction, stargazer, texreg |
Please use the canonical form https://CRAN.R-project.org/package=mlogit to link to this page.