We include 1) data cleaning including variable scaling, missing values and unbalanced variables identification and removing, and strategies for variable balance improving; 2) modeling based on random forest and gradient boosted model including feature selection, model training, cross-validation and external testing. For more information, please see Deng X (2021). <doi:10.1016/j.scitotenv.2020.144746>; H2O.ai (Oct. 2016). R Interface for H2O, R package version 3.10.0.8. <https://github.com/h2oai/h2o-3>; Zhang W (2016). <doi:10.1016/j.scitotenv.2016.02.023>.
Version: | 0.0.2 |
Imports: | tidyverse, h2o, performanceEstimation, dummies, dplyr, ggplot2, pROC, survival |
Published: | 2021-06-27 |
Author: | Xinlei Deng [aut, cre, cph], Wangjian Zhang [aut], Shao Lin [aut] |
Maintainer: | Xinlei Deng <xdeng3 at albany.edu> |
License: | GPL-3 |
NeedsCompilation: | no |
CRAN checks: | APML results |
Reference manual: | APML.pdf |
Package source: | APML_0.0.2.tar.gz |
Windows binaries: | r-devel: APML_0.0.2.zip, r-release: not available, r-oldrel: APML_0.0.2.zip |
macOS binaries: | r-release (arm64): APML_0.0.2.tgz, r-release (x86_64): APML_0.0.2.tgz, r-oldrel: APML_0.0.2.tgz |
Old sources: | APML archive |
Please use the canonical form https://CRAN.R-project.org/package=APML to link to this page.