Implementing the computational phase of the Causes of Outcome Learning approach as described in Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. medRxiv (2020) <doi:10.1101/2020.12.10.20225243>. The optional 'ggtree' package can be obtained through Bioconductor.
Version: | 1.0.2 |
Imports: | Rcpp, data.table, pROC, graphics, mltools, stats, plyr, ggplot2, ClustGeo, wesanderson |
LinkingTo: | Rcpp, RcppArmadillo |
Suggests: | ggtree, imager |
Published: | 2021-06-30 |
Author: | Andreas Rieckmann [aut, cre], Piotr Dworzynski [aut], Leila Arras [ctb], Claus Thorn Ekstrom [aut] |
Maintainer: | Andreas Rieckmann <aric at sund.ku.dk> |
License: | GPL-2 |
URL: | https://bioconductor.org |
NeedsCompilation: | yes |
Materials: | README |
CRAN checks: | CoOL results |
Reference manual: | CoOL.pdf |
Package source: | CoOL_1.0.2.tar.gz |
Windows binaries: | r-devel: CoOL_1.0.1.zip, r-devel-UCRT: CoOL_1.0.1.zip, r-release: CoOL_1.0.1.zip, r-oldrel: CoOL_1.0.1.zip |
macOS binaries: | r-release (arm64): CoOL_1.0.1.tgz, r-release (x86_64): CoOL_1.0.1.tgz, r-oldrel: CoOL_1.0.1.tgz |
Old sources: | CoOL archive |
Please use the canonical form https://CRAN.R-project.org/package=CoOL to link to this page.