FNN: Fast Nearest Neighbor Search Algorithms and Applications

Cover-tree and kd-tree fast k-nearest neighbor search algorithms and related applications including KNN classification, regression and information measures are implemented.

Version: 1.1.3
Depends: R (≥ 3.0.0)
Suggests: chemometrics, mvtnorm
Published: 2019-02-15
Author: Alina Beygelzimer, Sham Kakadet and John Langford (cover tree library), Sunil Arya and David Mount (ANN library 1.1.2 for the kd-tree approach), Shengqiao Li
Maintainer: Shengqiao Li <lishengqiao at yahoo.com>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
Copyright: ANN Copyright (c) 1997-2010 University of Maryland and Sunil Arya and David Mount. All Rights Reserved.
FNN copyright details
NeedsCompilation: yes
Materials: ChangeLog
CRAN checks: FNN results


Reference manual: FNN.pdf
Package source: FNN_1.1.3.tar.gz
Windows binaries: r-devel: FNN_1.1.3.zip, r-devel-UCRT: FNN_1.1.3.zip, r-release: FNN_1.1.3.zip, r-oldrel: FNN_1.1.3.zip
macOS binaries: r-release (arm64): FNN_1.1.3.tgz, r-release (x86_64): FNN_1.1.3.tgz, r-oldrel: FNN_1.1.3.tgz
Old sources: FNN archive

Reverse dependencies:

Reverse depends: fCI, freqparcoord, HDoutliers, HellCor, IndepTest, MBC, probout, regtools, scAlign
Reverse imports: adamethods, Anthropometry, aRchi, atakrig, autoFRK, bapred, BayesNSGP, bigdatadist, CAST, cccd, cicero, cmsaf, cmsafops, crmReg, customizedTraining, densityClust, DepecheR, DSWE, ECoL, EmbedSOM, evclass, evclust, exdqlm, fpcb, gainML, GpGp, GPvecchia, gstat, GWmodel, hextri, Hmsc, hybridEnsemble, ider, imbalance, KCSKNNShiny, KNNShiny, ks, LICORS, LilRhino, metamer, miceRanger, missRanger, MOEADr, msImpute, nntrf, OkNNE, outForest, PINSPlus, pmlbr, pRoloc, RaceID, RaSEn, rliger, sambia, scgwr, Sconify, shattering, SmartMeterAnalytics, smotefamily, spamtree, stray, TDA, trafo, unbalanced, uwot, varrank, VoxR, xkcdcolors
Reverse suggests: amt, BiocNeighbors, CBDA, dobin, gcKrig, gmGeostats, image.dlib, knn.covertree, mlr, rainette, SACOBRA, superml


Please use the canonical form https://CRAN.R-project.org/package=FNN to link to this page.