HDBRR: High Dimensional Bayesian Ridge Regression without MCMC

The svd(singular value decomposition) or qr decomposition was using for the implementation, this avoid the recursion optimizing the time in the compute <https://drive.google.com/drive/folders/1xJw7gM5_XiJipQ3grTZkfc6q4K0hzuCx?usp=sharing>.

Version: 0.1.8
Imports: numDeriv, parallel, bigstatsr, MASS
Published: 2021-04-20
Author: Sergio Perez-Elizalde Developer [aut], Blanca Monroy-Castillo Developer [aut, cre], Paulino Perez-Rodriguez User [ctb]
Maintainer: Blanca Monroy-Castillo Developer <blancamonroy.96 at gmail.com>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
CRAN checks: HDBRR results


Reference manual: HDBRR.pdf
Package source: HDBRR_0.1.8.tar.gz
Windows binaries: r-devel: HDBRR_0.1.8.zip, r-release: HDBRR_0.1.8.zip, r-oldrel: HDBRR_0.1.8.zip
macOS binaries: r-release (arm64): HDBRR_0.1.8.tgz, r-release (x86_64): HDBRR_0.1.8.tgz, r-oldrel: HDBRR_0.1.8.tgz


Please use the canonical form https://CRAN.R-project.org/package=HDBRR to link to this page.