Version 2.1.1

Package ‘Rdsm’

February 19, 2015

Author Norm Matloff <normmatloff@gmail.com>
Maintainer Norm Matloff <normmatloff@gmail.com>

Date 10/01/2014

Title Threads Environment for R

Description Provides a threads-type programming environment for R.
The package gives the R programmer the clearer, more concise
shared memory world view, and in some cases gives superior
performance as well. In addition, it enables parallel processing on
very large, out-of-core matrices.

OS_type unix

Imports bigmemory (>= 4.0.0), parallel

Suggests synchronicity

LazyLoad no
License GPL (>=2)
Repository CRAN

NeedsCompilation no

Date/Publication 2014-10-08 05:51:02

R topics documented:

Rdsm-package
barr
getidxs
getmatrix . .
loadex
makebarr . .
mgrinit

mgrmakelock
mgrmakevar

rdsmlock . .
readsync . . .
stoprdsm . . .

2 Rdsm-package

Index 13

Rdsm-package Adds a threaded parallel programming paradigm to R.

Description

This package provides a parallel shared-memory programming paradigm for R, very similar to
threaded programming in C/C++. This enables the programmer to write simpler, clearer code.
Furthermore, in some applications this package produces significantly faster code, compared to
versions written for other parallel R libraries. It also allows placing very large matrices in secondary
storage, while treating them as being in shared memory.

Details

Package: Rdsm
Type: Package
Version: 2.1.1

Date: 2014-02-16
License: GPL (>=2)

List of functions:
initialization, run at manager:

mgrinit(): initialize system
mgrmakevar(): create a shared variable
mgrmakelock(): create a lock
makebarr(): create a barrier

called by applications:

barr(): barrier call
rdsmlock(): lock operation (via realrdsmlock())
rdsmunlock(): unlock operation (via realrdsmunlock())

application utilities:

getidxs(): partition a set of indices for work assignment
getmatrix(): allow a matrix to be referenced regardless of
whether it is specified as a bigmemory object,
a bigmemory descriptor, or via a quoted name
stoprdsm() shut down cluster and clean up files

Built-in variables accessible by the threads, at the worker nodes:

Rdsm-package 3

myinfo$nwrkrs: total number of threads
myinfo$id: this thread's ID number

To run, set up a cluster via the parallel package); we’ll refer to the R process from which this is done
as the manager; the processes running in the cluster will be called workers. Create the application’s
shared variables from the manager, using mgrmakevar (). Launch the worker threads, again from
the manager, by the parallel call clusterEvalQ() or clusterCall(). One typically codes so that
the results are in shared variables. See examples below, and more in the examples/ directory in
this distribution.

The shared variables are read to/written by any of the workers and the manager. In fact, while
an Rdsm application is running, other R processes on the same machine (or a different machine
sharing the same file system, if the variables are filebacked) can access the shared variables. See
the file ExternalAccess. txt in the doc/ directory.

Rdsm uses the bigmemory library to store its shared variables. Though the latter can work on a
(physical) cluster of several machines sharing a file system, Rdsm does not run on such systems at
this time.

Further documentation in the doc/ directory.

Author(s)

Norm Matloff <matloff @cs.ucdavis.edu>

See Also

mgrinit, mgrmakevar, mgrmakelock, barr, rdsmlock, rdsmunlock, getidxs, getmatrix

Examples

library(parallel)

c2 <- makeCluster(2) # form 2-thread Snow cluster

mgrinit(c2) # initialize Rdsm

mgrmakevar(c2,"m",2,2) # make a 2x2 shared matrix

m[,] <- 3 # 2x2 matrix of all 3s

example of shared memory:

at each thread, set id to Rdsm built-in ID variable for that thread
clusterEvalQ(c2,id <- myinfo$id)

clusterEvalQ(c2,m[1,id] <- id*2) # assignment executed by each thread
m{,] # top row of m should now be (1,4)

matrix multiplication; the product u %*% v is computed, product
placed in w

note again: mmul() call will be executed by each thread

mmul <- function(u,v,w) {
require(parallel)
decide which rows of u this thread will work on
myidxs <- splitIndices(nrow(u),myinfo$nwrkrs)[[myinfo$id]]
multiply this thread's part of u with v, placing the product in the

4 getidxs

corresponding part of w
wlmyidxs,] <- ulmyidxs,] %*% v[,]
invisible (@)

}

create test matrices

mgrmakevar(c2,"a",6,2)

mgrmakevar(c2,"b",2,6)

mgrmakevar(c2,"c",6,6)

give them values

al,] <- 1:12

b[,] <- 1 # all 1s

clusterExport(c2,”"mmul”) # send mmul() to the threads
clusterEvalQ(c2,mmul(a,b,c)) # run the threads

c[,] # check results

barr Barrier operation.

Description

Standard barrier operation.

Usage
barr()

Details
Standard barrier operation, to ensure that work done by one thread is ready before other threads
make use of it. When a thread executes barr (), it will block until all threads have executed it.
Author(s)
Norm Matloff

getidxs Parallelizing work assignment.

Description
Assigns to an Rdsm thread its portion of a set of indices, for the purpose of partitioning work to the
threads.

Usage

getidxs(m)

getmatrix 5

Arguments
m The sequence 1:m will be partitioned, and one portion will be assigned to the
calling thread.
Details

The range 1:m will be partitioned into r subranges, the i-th of which will be used by thread i to
determine which work that thread has been assigned.

Value

The subrange assigned to the invoking thread.

Author(s)
Norm Matloff

getmatrix Referencing a matrix via different forms.

Description

Returns a matrix, whether requested via an R matrix, bigmemory object, bigmemory descriptor or
quoted name form.

Usage
getmatrix(m)
Arguments
m Specification of the matrix, as either an R matrix, bigmemory object, bigmemory
descriptor or quoted name.
Details

This utility function enables writing general Rdsm code, specifying a matrix via different forms.

Value

The requested matrix.

Author(s)

Norm Matloff

6 loadex

Examples

library(parallel)

c2 <- makeCluster(2)

mgrmakevar(c2,"u”,2,2) # u is a 2x2 bigmemory matrix
ul] <- 8 # fill u with 8s

ul]l] # prints a 2x2 matrix of 8s

v <- getmatrix(u) # get u and assign it to v

u and v are both addresses, pointing to the same memory location
v[] # prints all 8s

v[2,1] <= 3

v[] # prints three 8s and a 3

u[] # prints three 8s and a 3

w <- getmatrix("u”) # w will also be a copy of u

w[] # same as u

loadex Sources example files

Description

Facilitates learning a new package, by sourcing any specified example file for an installed package.

Usage

loadex(pkg,exfile=NA, subdir="examples")

Arguments

pkg Package name, quoted.

exfile Desired example file name, if any, quoted.

subdir Subdirectory name of the examples directory in the package.
Details

Loads the example file exfile, from the subdir directory within the tree wherepkg is installed. If
exfile = NA, the names of the files are returned, without any loading.

Value

See the case exfile = NA above.

Author(s)
Norm Matloff

makebarr 7

makebarr Create an Rdsm barrier.

Description

Creates an Rdsm barrier.

Usage

makebarr(cls,boost=F,barrback=F)

Arguments
cls The snow cluster.
boost Locks type. See mgrinit.
barrback If TRUE, the count/sense variables related to the barrier will be placed in back-
ing store.
Details

Run this from the manager (the R process from which you create the cluster) if you need a barrier.
Only one barrier is allowed in an Rdsm program (but multiple calls are allowed). It is accessible
from application code only through barr().

Author(s)
Norm Matloff

mgrinit Initialize Rdsm

Description

Initializes Rdsm on the given parallel cluster.

Usage

mgrinit(cls,boost=F,barrback=F)

Arguments
cls The parallel cluster.
boost Lock functions. If TRUE, boostlock() and boostunlock() are used; other-
wise backlock () and backunlock().
barrback If TRUE, the count/sense variables associated with the barrier will be placed in

backing store.

8 mgrmakelock

Details

Run this from the manager (the R process from which you create the cluster), before creating the
shared variables with mgrmakevar. The initialization need be done only once for the life of the
cluster.

If you put shared variables in backing store (barrback = TRUE in mgrmakevar ()), or if you are on
a Windows platform, you must have boost = FALSE.

Author(s)

Norm Matloff

mgrmakelock Create an Rdsm lock.

Description

Creates an Rdsm lock.

Usage

mgrmakelock(cls, lockname,boost=F)

Arguments

cls The parallel cluster.

lockname Name of the lock, quoted.

boost If TRUE, boost locks will be used.
Details

Run this from the manager (the R process from which you create the cluster) if you need a lock.
The lock is created, lockable/unlockable by all threads. If boost is TRUE, The variable will be of
class boost.mutex; see the library synchronicity for details.

Author(s)

Norm Matloff

mgrmakevar 9

mgrmakevar Create an Rdsm shared variable.

Description

Creates an Rdsm shared variable.

Usage

mgrmakevar(cls,varname,nr,nc,vartype="double"”, fs=FALSE,mgrcpy=TRUE, savedesc=TRUE)

Arguments
cls The parallel cluster.
varname Name of the shared variable, quoted. (The variable must be a matrix, though it
could be 1x1 etc.)
nr Number of rows in the variable.
nc Number of columns in the variable.
vartype Atomic R type of the variable, quoted, "double" by default.
fs Place in backing store? FALSE by default.
mgrcpy Place a copy of the shared variable on the manager node? TRUE by default.
savedesc Save the bigmemory descriptor for this variable on disk.
Details

Run this from the manager (the R process from which you create the cluster). The shared variable
will be created, readable/writable from all threads. The variable will be of class big.matrix; see
the library bigmemory for details.

Author(s)
Norm Matloff

rdsmlock Lock/unlock operations.

Description

Lock/unlock operations to avoid race conditions among the threads.

Usage

rdsmlock(1lck)
rdsmunlock(1lck)

10 rdsmlock

Arguments

1ck Lock name, quoted.

Details

Standard lock/unlock operations from the threaded coding world. When one thread executes rdsmlock(),
any other thread attempting to do so will block until the first thread executes rdsmunlock(). If a
thread does rdsmlock() on an unlocked lock, the thread call immediately returns and the thread
continues.

These functions are set in the call to mgrinit() via the argument boost to either boostlock and
boostunlock() or backlock and backunlock(), depending on whether you set boost to TRUE
or FALSE. respectively.

Code should be written so that locks are used as sparingly as possible, since they detract from
performance.

Author(s)
Norm Matloff

Examples

Not run:
unreliable function
s <- function(n) {
for (i in 1:n) {
tot[1,1] <- tot[1,1] + 1
}
3

library(parallel)

c2 <- makeCluster(2)

clusterExport(c2,”s")

mgrinit(c2)

mgrmakevar(c2,"tot"”,1,1)

tot[1,1] <- @

clusterEvalQ(c2,s(1000))

tot[1,1] # should be 2000, but likely far from it

s1 <- function(n) {
require(Rdsm)
for (i in 1:n) {
rdsmlock("totlock™)
tot[1,1] <- tot[1,1] + 1
rdsmunlock("totlock")

}

mgrmakelock(c2, "totlock™)
tot[1,1] <- @

readsync 11

clusterExport(c2,"s1")
clusterEvalQ(c2,s1(1000))
tot[1,1] # will print out 2000, the correct number

End(Not run)

readsync Syncing file-backed variables.

Description

Actions to propagate changes to file-backed Rdsm variables across a shared file system.

Usage

readsync(varname)

writesync(varname)
Arguments

varname Name of the Rdsm variable, quoted.
Details

This feature should be considered experimental, with poor performance and portability.

Suppose we have an Rdsm variable x which is in backing store (fs = TRUE in call to mgrmakevar()),
and that we on a shared file system. (These functions are not needed if all threads are on the same
machine.) When one Rdsm thread writes to x, the question here is when the updated value for x is
visible to other Rdsm threads.

The answer may depend on the underlying file system. The functions readsync() and writesync()
force the updates across the network. Normally one would call readsync() following rdsmlock()
and call writesync() just before calling rdsmunlock().

These should work on systems with "close-to-open cache coherency," as with the Network File
System (NFS). On some systems, these functions should be unnecessary.

Value

None.

Author(s)

Norm Matloff

12

Examples

library(parallel)

c2 <- makeCluster(2)
mgrinit(c2)
mgrmakevar(c2,"x",1,1,fs=TRUE)

clusterEvalQ(c2,me <- myinfo$id)
clusterEvalQ(c2,if (me==1) x[1,1] <- 3)

force update on network

clusterEvalQ(c2,if (me==1) writesync("x"))
clusterEvalQ(c2,if (me==2) readsync("x"))
clusterEvalQ(c2,if (me==2) x[1,1]1) # should be 3
clusterEvalQ(c2,if (me==2) x[1,1] <- 8)
clusterEvalQ(c2,if (me==2) writesync(”"x"))
clusterEvalQ(c2,if (me==1) readsync("x"))
clusterEvalQ(c2,x[1,1]) # both should yield 8

stoprdsm

stoprdsm Barrier operation.

Description

Standard barrier operation.

Usage

stoprdsm(cls)

Arguments

cls Cluster from the parallel package.

Details

Shuts down the given parallel cluster, and removes any .desc files that had been created.

Author(s)
Norm Matloff

Index

+Topic parallel computation
Rdsm-package, 2

xTopic shared memory
Rdsm-package, 2

*Topic threads
Rdsm-package, 2

*Topic
Rdsm-package, 2

barr, 3,4

getidxs, 3,4
getmatrix, 3,5

loadex, 6

makebarr, 7
mgrinit, 3,7
mgrmakelock, 3, 8
mgrmakevar, 3,9

Rdsm (Rdsm-package), 2
Rdsm-package, 2
rdsmlock, 3, 9
rdsmunlock, 3
rdsmunlock (rdsmlock), 9
readsync, 11

stoprdsm, 12

writesync (readsync), 11

13

	Rdsm-package
	barr
	getidxs
	getmatrix
	loadex
	makebarr
	mgrinit
	mgrmakelock
	mgrmakevar
	rdsmlock
	readsync
	stoprdsm
	Index

