mRMRe: Parallelized Minimum Redundancy, Maximum Relevance (mRMR)

Computes mutual information matrices from continuous, categorical and survival variables, as well as feature selection with minimum redundancy, maximum relevance (mRMR) and a new ensemble mRMR technique. Published in De Jay et al. (2013) <doi:10.1093/bioinformatics/btt383>.

Version: 2.1.1
Depends: R (≥ 3.5), survival, igraph, methods
Published: 2021-05-27
Author: Nicolas De Jay [aut], Simon Papillon-Cavanagh [aut], Catharina Olsen [aut], Gianluca Bontempi [aut], Bo Li [aut], Chirstopher Eeles [ctb], Benjamin Haibe-Kains [aut, cre]
Maintainer: Benjamin Haibe-Kains <benjamin.haibe.kains at>
License: Artistic-2.0
NeedsCompilation: yes
Citation: mRMRe citation info
CRAN checks: mRMRe results


Reference manual: mRMRe.pdf
Vignettes: mRMRe: an R package for parallelized mRMR ensemble feature selection
Package source: mRMRe_2.1.1.tar.gz
Windows binaries: r-devel:, r-devel-UCRT:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): mRMRe_2.1.1.tgz, r-release (x86_64): mRMRe_2.1.1.tgz, r-oldrel: mRMRe_2.1.1.tgz
Old sources: mRMRe archive

Reverse dependencies:

Reverse imports: PAA
Reverse suggests: FRESA.CAD, mlr, mlrCPO


Please use the canonical form to link to this page.