An implementation of the model in Betancourt, Zanella, Steorts (2020) <arXiv:2004.02008>, which performs microclustering models for categorical data. The package provides a vignette for two proposed methods in the paper as well as two standard Bayesian non-parametric clustering approaches for entity resolution. The experiments are reproducible and illustrated using a simple vignette. LICENSE: GPL-3 + file license.
Version: | 0.1.0 |
Depends: | R (≥ 3.2.4) |
Imports: | Rcpp (≥ 1.0.1), stats |
LinkingTo: | Rcpp |
Suggests: | knitr, rmarkdown |
Published: | 2020-10-01 |
Author: | Rebecca C Steorts [aut, cre], Brenda Betancourt [aut], Giacomo Zanella [aut] |
Maintainer: | Rebecca C Steorts <beka at stat.duke.edu> |
License: | GPL-3 |
NeedsCompilation: | yes |
Materials: | README |
CRAN checks: | microclustr results |
Reference manual: | microclustr.pdf |
Vignettes: |
Partitions |
Package source: | microclustr_0.1.0.tar.gz |
Windows binaries: | r-devel: microclustr_0.1.0.zip, r-devel-UCRT: microclustr_0.1.0.zip, r-release: microclustr_0.1.0.zip, r-oldrel: microclustr_0.1.0.zip |
macOS binaries: | r-release (arm64): microclustr_0.1.0.tgz, r-release (x86_64): microclustr_0.1.0.tgz, r-oldrel: microclustr_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=microclustr to link to this page.