Fits measurement error models using Monte Carlo Expectation Maximization (MCEM). For specific details on the methodology, see: Greg C. G. Wei & Martin A. Tanner (1990) A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms, Journal of the American Statistical Association, 85:411, 699-704 <doi:10.1080/01621459.1990.10474930> For more examples on measurement error modelling using MCEM, see the 'RMarkdown' vignette: "'refitME' R-package tutorial".
Version: | 1.2.1 |
Depends: | R (≥ 4.1.0) |
Imports: | MASS, SemiPar, mgcv, VGAM, VGAMdata, caret, expm, mvtnorm, sandwich, stats, dplyr, scales |
Published: | 2021-06-28 |
Author: | Jakub Stoklosa |
Maintainer: | Jakub Stoklosa <j.stoklosa at unsw.edu.au> |
License: | GPL-2 |
NeedsCompilation: | no |
Materials: | README |
CRAN checks: | refitME results |
Reference manual: | refitME.pdf |
Package source: | refitME_1.2.1.tar.gz |
Windows binaries: | r-devel: refitME_1.2.1.zip, r-release: refitME_1.2.0.zip, r-oldrel: refitME_1.2.0.zip |
macOS binaries: | r-release (arm64): refitME_1.2.0.tgz, r-release (x86_64): refitME_1.2.1.tgz, r-oldrel: refitME_1.2.0.tgz |
Old sources: | refitME archive |
Please use the canonical form https://CRAN.R-project.org/package=refitME to link to this page.