regressoR: Regression Data Analysis System

Perform a supervised data analysis on a database through a 'shiny' graphical interface. It includes methods such as linear regression, penalized regression, k-nearest neighbors, decision trees, ada boosting, extreme gradient boosting, random forest, neural networks, deep learning and support vector machines.

Version: 1.2.1
Depends: R (≥ 3.5)
Imports: shiny (≥ 1.2.0), shinyAce (≥ 0.3.3), shinydashboardPlus (≥ 2.0.0), flexdashboard (≥, shinyWidgets (≥ 0.4.4), neuralnet (≥ 1.44.2), rpart (≥ 4.1-13), rpart.plot, e1071 (≥ 1.7-0.1), kknn (≥ 1.3.1), corrplot (≥ 0.84), glmnet (≥ 2.0-16), ggplot2 (≥ 3.1.0), dplyr (≥, htmltools (≥ 0.3.6), forcats, gbm, stringr, xtable, rattle
Suggests: randomForest, DT, colourpicker, shinyjs, gridExtra, tibble, scales, scatterplot3d, psych, dummies, testthat, pls
Published: 2021-04-06
Author: Oldemar Rodriguez R. [aut, cre], Andres Navarro D. [ctb, prg], Diego Jimenez A. [ctb, prg], Ariel Arroyo S. [ctb, prg]
Maintainer: Oldemar Rodriguez R. <oldemar.rodriguez at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Materials: README
CRAN checks: regressoR results


Reference manual: regressoR.pdf
Package source: regressoR_1.2.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): regressoR_1.2.1.tgz, r-release (x86_64): regressoR_1.2.1.tgz, r-oldrel: regressoR_1.2.1.tgz
Old sources: regressoR archive


Please use the canonical form to link to this page.