Package ‘ecochange’
September 8, 2021

Type Package
Title Integrating Ecosystem Remote Sensing Products to Derive EBV Indicators
Version 2.2
Date 2021-08-25
Maintainer Wilson Lara Henao <wilarhen@gmail.com>
Description Essential Biodiversity Variables (EBV) are state variables with dimensions on time, space, and biological organization that document biodiversity change. Freely available ecosystem remote sensing products (ERSP) are downloaded and integrated with data for national or regional domains to derive indicators related to structural EBV, including horizontal ecosystem extents, fragmentation, and information-theory indices. To process ERSP, users must provide at least a region of interest (polygon or geographic administrative data map). downloadable ERSP include Global Surface Water (Peckel et al., 2016) <doi:10.1038/nature20584>, Forest Change (Hansen et al., 2013) <doi:10.1126/science.1244693>, and Continuous Tree Cover data (Sexton et al., 2013) <doi:10.1080/17538947.2013.786146>. The package relies on GDAL binaries. To instal GDAL in different operative systems, see the system-dependencies vignette.
License GPL-3
Depends R (>= 3.5.0), raster, rgeos, stats, ggplot2, sf, gdalUtils
Imports readr,rgdal,parallel,curl,gdalUtilities,graphics,rvest,landscapemetrics,sp,tibble,utils,xml2,dplyr,R.utils,httr,getPass,method
Suggests knitr, rmarkdown, rasterVis
SystemRequirements GDAL binaries
VignetteBuilder knitr
Encoding latin1
NeedsCompilation no
Author Wilson Lara Henao [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [aut], Maria C. Londono [aut]
Repository CRAN
Date/Publication 2021-09-08 13:10:02 UTC
Description

A barplot of EBVstats is printed.

Usage

```r
## S3 method for class 'EBVstats'
barplot(height,
        ...
)
```

Arguments

- `height` tibble of EBVstats.
- `...` Additional arguments in `barplot`.

Value

Bar plot.

Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [aut], Maria C. Londono [aut]
EBVstats

Examples

Warnings from GDAL/PROJ are suppressed.

Brick with structural Essential Biodiversity Variables covering the
extent of a location in the northern Amazon basin (Colombia):

path. <- system.file("amazon.grd", package = "ecochange")
amazon <- suppressWarnings(brick(path.))

Tree-cover layers in the 'amazon' brick are both formatted and
deforested:

suppressWarnings(
def <- echanges(amazon, eco = 'TC',
 change = 'lossyear',
 eco_range = c(1,80),
 get_unaffected = TRUE,
 binary_output = FALSE,
 mc.cores = 2)
)

Deforestation Statistics:
defstats <- suppressWarnings(EBVstats(def))

barplot method:
barplot(defstats)

EBVstats

EBV Stats

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>This function is a wrapper of <code>cellStats</code> used to compute statistics of essential biodiversity variables.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>EBVstats(ccp, stats, ...)</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccp</td>
</tr>
<tr>
<td>stats</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
Value

tibble.

Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [aut], Maria C. Londono [aut]

Examples

```r
## Warnings from GDAL/PROJ are suppressed.
## Brick with structural Essential Biodiversity Variables covering the
## extent of a location in the northern Amazon basin (Colombia):

path. <- system.file('amazon.grd', package = 'ecochange')
amazon <- suppressWarnings(brick(path.))

## Tree-cover layers in the 'amazon' brick are both formatted and
## deforested:

suppressWarnings(
  def <- echanges(amazon, eco = 'TC',
                  change = 'lossyear',
                  eco_range = c(1,80),
                  get_unaffected = TRUE,
                  binary_output = FALSE,
                  mc.cores = 2)
)

## Deforestation Statistics:

defstats <- suppressWarnings(EBVstats(def))

## barplot method:

barplot(defstats)
```

Ecosystem changes

Description

This function produces ecosystem-change maps by masking cell values in a layer of ecosystem changes over a target set of ecosystem variables. The function allows focusing the ecosystem-change analysis on a species distribution range.
Usage

```r
echanges(ps, eco = names(ps[[1:(nlayers(ps) - 1)]]), change = names(ps[[nlayers(ps)]]),
sp_dist, eco_range = c(1, 100), change_vals = 1:19,
sp_dist_range = c(1, 1), spread = TRUE,
get_unaffected = TRUE,
binary_output = FALSE,
noDataValue = 0,
mc.cores = round(detectCores() * 0.6, 0), ...)
```

Arguments

- `ps`: RasterStack or `SpatialPolygonsDataFrame`. Stack of spatial data, including the target ecosystem variables, a layer of changes, and an alternative layer of a species distribution range. This argument can also be a polygon geometry used to integrate such spatial data via implementation of `rsp2ebv`; see the ellipsis term below.
- `eco`: character. Regular expression matching names of a subset of layers representing the target ecosystem variables. Default matches names of the first 1:(n-1) layers in `ps`.
- `change`: character. Name of the layer of ecosystem changes. Default matches the name of the last layer in `ps`.
- `sp_dist`: character. Name of an alternative layer representing a species distribution range. If missing then this argument is ignored.
- `eco_range`: numeric. Range of values in the target ecosystem variable.
- `change_vals`: numeric. Vector of values in the layer of ecosystem changes.
- `sp_dist_range`: numeric. Range of values in the alternative layer of species distribution range. This argument is ignored if `sp_dist` is missing.
- `spread`: logical. Spread representation of ecosystem changes. Users do not need to change this argument. It is used by other routines to fastening computation of ecosystem horizontal extents. If `FALSE` then the function mask cell values in the target ecosystem variables over over the layer of ecosystem changes. Default `TRUE`.
- `get_unaffected`: logical. Extract unaffected areas. If `FALSE` then pixel values of the ecological variable across the changed areas are extracted. Default `TRUE`.
- `binary_output`: logical. Produce binary outputs (masks). If `FALSE` then ranges of values of the ecological variable are maintained. Default `FALSE`.
- `noDataValue`: numeric. Output NoDataValue. Default 0.
- `mc.cores`: numeric. The number of cores. Default uses around 60 percent of the CPU capacity.
- `...`: If `ps` is a polygon then additional arguments in `rsp2ebv`.
Value

RasterBrick.

Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [aut], Maria C. Londono [aut]

References

Examples

```r
## Warnings from GDAL/PROJ are suppressed.

## Brick with structural Essential Biodiversity Variables covering the
## extent of a location in the northern Amazon basin (Colombia):
path. <- system.file(
  '/quotesingle.Varamazon.grd',
  package = '/quotesingle.Varecochange'
)
amazon <- suppressWarnings(brick(path.))

## Changes in layers of tree-canopy cover (TC) in the 'amazon'
## brick are computed:
suppressWarnings(
def <- echanges(amazon, eco = 'TC',
  change = 'lossyear',
  eco_range = c(1,80),
  get_unaffected = TRUE,
  binary_output = FALSE,
  mc.cores = 2)
)

## Function 'plotebv' allows comparing rasters using a common scale bar:
suppressWarnings(
  plotebv(def)
)
```
gaugeIndicator

Gauge Indicator

Description

This function processes ecosystem-change maps from `echanges` to calculate biodiversity indicators, including ecosystem extent, entropy, fractal dimension, among others. To sample the indicators across fixed-size grids see `sampleIndicator`.

Usage

```r
gaugeIndicator(ps, ..., metric = "area_ha", smp_lsm = list(), mc.cores = round(detectCores() * 0.6, 0))
```

Arguments

- `ps` SpatialPolygonsDataFrame or RasterStack. Polygon geometry used to produce ecosystem-change maps via the implementation of `echanges` or the stack of ecosystem-change maps.
- `...` If `ps` is a polygon then additional arguments in `echanges` or `rsp2ebv`.
- `metric` character. The name of an indicator. Default 'area_ha' computes ecosystem areas (ha) at class level. See the argument 'metric' in `list_lsm` to implement other metrics.
- `smp_lsm` list. List of arguments in `calculate_lsm`. This argument is ignored when `metric = 'area_ha'`.
- `mc.cores` numeric. The number of cores. Default uses around 60 percent of the cores.

Details

Coordinate reference system of the spatial units must have `metric` units UTM. Performance in the computation of ecosystem extents is optimized via the implementation of the function `tabuleRaster`. Indicators other than ecosystem extents are calculated implementing `calculate_lsm`.

Value

tibble.

Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [aut], Maria C. Londono [aut]
References

Examples

```r
## Warnings from GDAL/PROJ are suppressed.
## RasterBrick of structural Essential Biodiversity Variables
## covering the extent of a location in the northern Amazon basin
## (Colombia) is imported:
path. <- system.file('amazon.grd',package = 'ecochange')
amazon <- suppressWarnings(brick(path.))

## Changes in layers of tree-canopy cover (TC) in the 'amazon'
## brick are computed:
suppressWarnings(
  def <- echanges(amazon, eco = 'TC',
                 change = 'lossyear',
                 eco_range = c(1,80),
                 get_unaffected = TRUE,
                 binary_output = FALSE,
                 mc.cores = 2)
)

## Function 'gaugeIndicator' is used to compute ecosystem areas
## (default):
am_areas <- gaugeIndicator(def,
                             mc.cores = 2)
```

getGADM

Get Geographic Administrative Unit

Description

This function is a wrapper of `getData` used to import levels in Geographic Administrative Data Maps (GADM).
Usage

getGADM(unit.nm = NULL,
 level = 2, country = "COL",
 path = tempdir())

Arguments

unit.nm character or NULL. Name of an administrative unit (e.g. municipality), or
the name of such an unit plus its corresponding higher-level unit (e.g. depart-
ment/state). If NULL then a list of unit names is printed.

level numeric. A number between zero and two, indicating any of the levels of admin-
istrative subdivisions in GADM (0=country, 1=first level of subdivision, and
2=second level of subdivision).

country character. ISO code specifying a country. Default 'COL'

path character. Path name indicating where the unit will be stored. Default stores
the data in a temporary directory.

Value

SpatialPolygonsDataFrame or character vector of GADM units..

Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez
[aut], Maria C. Londono [aut]

References

https://gadm.org/

Examples

Printing municipalities of Colombia:

muni <- getGADM()
head(muni)
getrsp

Get remote sensing product

Description

This function processes the extent of a predefined region of interest (polygon geometry or GADM unit) to download ecosystem remote sensing products (ERSP). Downloadable ERSP include Global Surface Water, Forest Change, and Continuous Tree Cover data. See listGP.

Usage

getrsp(roi = NULL, ...,
 lyrs = NULL, path,
 verify.web = FALSE,
 mc.cores = round(detectCores() *
 0.6, 0))

Arguments

roi SpatialPolygonsDataFrame; or character; or NULL. Region of interest. This can be either 1) a polygon geometry; or 2) the name of a GADM unit (see getGADM); or 3) a NULL value. Default NULL makes the function to print a list of GADM units.

... If roi is a GADM unit then additional arguments in getGADM.

lyrs character. Remote sensing products. Default NULL makes the function to print a list of Downloadable ERSP, see listGP.

path character. Path name indicating where the variables will be stored. Default uses a folder named as 'ecochange' located in a current temporary directory.

verify.web logical. Verify in the web whether the URLs used to download the rsp are available. See getOption('webs'). Default FALSE.

mc.cores numeric. The number of cores. Default uses around 60 percent of the cores.

Details

Downloads of Continuous Tree Cover data require user authentication through the NASA Earth data Login. To obtain a NASA Earth data Login account, please visit: https://urs.earthdata.nasa.gov/users/new.

Value

Path names of the remote sensing products just retrieved, or character vectors suggesting GADM units/Global Products that can be used to download ERSP (see NULL defaults in arguments 'roi' and 'lyrs').

Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [aut], Maria C. Londono [aut]
getWRS

References

Examples

Warnings from GDAL/PROJ are suppressed.

Polygon of the Colombian municipality of Cartagena del Chairá:
load(system.file('cchaira_roi.RData',package = 'ecochange'))

A Global Surface Water layer ('seasonality') which covers the
extent of the polygon is retrieved:

suppressWarnings(
 rsp_cchaira <- getrsp(cchaira_roi,
 lys = 'seasonality', mc.cores = 2, path = tempdir())
)
 file.exists(rsp_cchaira)

getWRS | Get WRS

Description

This function processes regions of interest (a polygon geometry or GADM unit) to find corresponding Landsat Path/Row World Reference System (WRS) polygons. This function is internally implemented by getrsp

Usage

getWRS(roi = NULL, path = tempdir(),
 ...)

Arguments

roi SpatialPolygonsDataFrame; or character; or NULL. Region of interest. This can be whether 1) a polygon geometry; or 2) the name of a GADM unit (see `getGADM`); or 3) a NULL value. Default NULL makes the function to print a list of GADM units.

path character. Path name indicating where the WRS data are processed.

... Additional arguments in `getGADM`.

Value

SpatialPolygonsDataFrame, or set of GADM units.

Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [aut], Maria C. Londono [aut]

Examples

```r
load(system.file('cchaira_roi.RData', package = 'ecochange'))

wrs_cchaira <- suppressWarnings(getWRS(cchaira_roi))
plot(wrs_cchaira)
```

listGP

List of global products

Description

This function prints information about ecosystem remote sensing products that can be downloaded with `getrsp`.

Usage

```r
listGP(layer = TRUE, 
   Algorithm = TRUE, 
   author = TRUE, funs = FALSE, 
   api.code = FALSE)
```

Arguments

layer character. Add column 'layer' to the data.
Algorithm character. Add column 'Algorithm' to the data.
author character. Add column 'author' to the data.
funs character. Add column 'funs' to the data.
api.code character. Add column 'api.code' to the data.
Value
tibble.

Author(s)
Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [aut], Maria C. Londono [aut]

References

Examples
```r
lst <- listGP()
```

plotebv

Plot EBV

Description
This function displays level plots for ecosystem remote sensing products using common scale-bars. The function is helpful to visualize patterns in biodiversity indicators.

Usage
```r
plotebv(ebv, col.regions = rev(viridis_pal(option = "D")(255)),
        ...)
```

Arguments
- `ebv` Raster*. Raster Object.
- `col.regions` Color palette. If null then `viridis_pal(option = 'D')` is implemented.
- `...` Further arguments in `panel.levelplot()`

Value
levelplot.
Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [aut], Maria C. Londono [aut]

Examples

```r
## Warnings from GDAL/PROJ are suppressed.
## Brick with structural Essential Biodiversity Variables covering the 
## extent of a location in the northern Amazon basin (Colombia):
path. <- system.file('amazon.grd',package = 'ecochange')
amazon <- suppressWarnings(brick(path.))

## Changes in layers of tree-canopy cover (TC) in the 'amazon'
## brick are computed:
suppressWarnings(
def <- echanges(amazon, eco = 'TC', 
    change = 'lossyear', 
    eco_range = c(1,80), 
    get_unaffected = TRUE, 
    binary_output = FALSE, 
    mc.cores = 2)
)

## Function 'plotebv' allows comparing rasters using a common scale bar:
suppressWarnings(
    plotebv(def)
)
```

plotind

Plot indicator

Description

A plot of `gaugeIndicator` is printed.

Usage

```r
plotind(x, labs = list(x = "layer", 
    y = unique(as.character(x$metric)), 
    fill = "class")
```

Arguments

- **x**
 - tibble. Data set of indicators such as that produced by `gaugeIndicator`.
- **labs**
 - Further arguments in `labs`.
Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [aut], Maria C. Londono [aut]

Examples

```r
## Warnings from GDAL/PROJ are suppressed.

## RasterBrick of structural Essential Biodiversity Variables
## covering the extent of a location in the northern Amazon basin
## (Colombia) is imported:
path. <- system.file('amazon.grd', package = 'ecochange')
amazon <- suppressWarnings(brick(path.))

## Changes in layers of tree-canopy cover (TC) in the 'amazon'
## brick are computed:
suppressWarnings(
  def <- echanges(amazon, eco = 'TC',
      change = 'lossyear',
      eco_range = c(1,80),
      get_unaffected = TRUE,
      binary_output = FALSE,
      mc.cores = 2)
)

## Function 'gaugeIndicator' is used to compute ecosystem areas
## (default metric of the function):
am_areas <- gaugeIndicator(def,
    mc.cores = 2)

## Plot of the output from 'gaugeIndicator'
plotind(am_areas)
```

Rsp2ebv

Integrate remote sensing products

Description

This function integrates ecosystem remote sensing products and produces raster-data sections with the cell values enclosed in a region of interest.

Usage

```r
rsp2ebv(ps = NULL, ..., 
  lyr = NULL, path,
  sr, ofr = c(30, 30),
  mc.cores = round(detectCores() * 0.6, 0))
```
Arguments

- **ps**: SpatialPolygonsDataFrame; or character; or NULL. Region of interest. This can be whether 1) a polygon geometry; or 2) the name of a GADM unit (see `getGADM`); or 3) a NULL value. Default NULL makes the function to print a list of GADM units.

... If `ps` is a GADM unit then additional arguments in `getGADM` can be specified here.

- **lyrs**: character. Names of the ecosystem earth-observation products. If NULL then a list of products is printed, see `listGP`. Default NULL.

- **path**: character. Path name indicating where the variables are stored. If missing then a folder named as 'ecochange' located in a current temporary directory is used.

- **sr**: character. PROJ.4 description of the target coordinate reference system. If missing then the target layers are projected to metric system UTM.

- **ofr**: numeric. \(c(xres,yres)\). Output file resolution (in target georeferenced units). Default \(c(30,30)\) m2.

- **mc.cores**: numeric. The number of cores. Default uses around 60 percent of the cores.

Details

This function implements 'gdalUtils' so it assumes the user has a working GDAL installation on their system. From the documentation: "If the 'gdalUtils_gdalPath' option has been set (usually by 'gdal_setInstallation'), the GDAL found in that path will be used. If nothing is found, 'gdal_setInstallation' will be executed to attempt to find a working GDAL that has the right drivers as specified with the 'of' (output format) parameter", see example below.

Value

- RasterStack or list.

Author(s)

- Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [aut], Maria C. Londono [aut]

References

First, we'll check to make sure there is a valid GDAL installation (from `gdalUtils`):

```r
gdalUtils::gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
```

Warnings from GDAL/PROJ are suppressed.

A Global Surface Water layer ('seasonality') covering the extent of a Colombian municipality Cartagena del Chairá is formed into an spatial EBV:

```r
load(system.file('cchaira_roi.RData', package = 'ecochange'))
suppressWarnings(
  rsp_cchaira <- getrsp(cchaira_roi,
                        lyrs = 'seasonality', mc.cores = 2, path = tempdir())
)
file.exists(rsp_cchaira)
suppressWarnings(
  season_cchaira <- rsp2ebv(cchaira_roi,
                             lyrs = 'seasonality', path = tempdir())
)
suppressWarnings(
  plotebv(season_cchaira)
)
```

`sampleIndicator`

Sample Biodiversity indicator

Description

This function divides into fixed-size grids each of the scenes of a stack of ecosystem-spatial data and samples a biodiversity indicator by every grid. To compute biodiversity indicators at the class and landscape levels, see `gaugeIndicator`

Usage

```r
sampleIndicator(ps = NULL,
                ..., metric = "condent",
                classes = 5, min = 1,
                max = 100, side,
```
smp_lsm = list(level = "landscape"),
mc.cores = round(detectCores() *
0.6, 0))

Arguments

ps SpatialPolygonsDataFrame or RasterStack. Polygon geometry used to pro-
duce ecosystem-change maps via the implementation of changes or the stack
of ecosystem-change maps.

... If ps is a polygon then additional arguments in changes or rsp2ebv.
metric character. The name of an indicator other than ecosystem extent. This can
be cohesion ("cohesion"), conditional entropy ("condent"), perimeter-area
fractal dimension ("pafrac"), among others, see package list_lsm. Default
"condent".

classes numeric; or NULL. Number of evenly spaced classes used to reclassify
the layers. Default 5. If NULL then the layers are not reclassified.

min numeric. If classes != NULL then minimum cell value in the layers. Default 1

max numeric. If classes != NULL then maximum cell value in the layers. Default
100

side numeric. Side of the sampling grid (m). If missing the function tries to find a
grid size the samples at least a grid with a non-NA value of the indicator.

smp_lsm List. Additional arguments in sample_lsm

mc.cores numeric. The number of cores. Default uses 60 percent of the cores.

Value

Raster*.

Author(s)

Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez
[aut], Maria C. Londono [aut]

References

rics: an open source R tool to calculate landscape metrics. Ecography, 42(10), 1648-1657.

Skidmore, A. K., & Pettorelli, N. (2015). Agree on biodiversity metrics to track from space: Ecol-
Examples

```r
## Warnings from GDAL/PROJ are suppressed.
## RasterBrick of structural Essential Biodiversity Variables
## covering the extent of a location in the northern Amazon basin
## (Colombia) is imported:
path. <- system.file('amazon.grd', package = 'ecochange')
amazon <- suppressWarnings(brick(path.))

## Changes in layers of tree-canopy cover (TC) in the 'amazon' brick are computed:
suppressWarnings(
def <- exchanges(amazon, eco = 'TC',
                   change = 'lossyear',
                   eco_range = c(1,80),
                   get_unaffected = TRUE,
                   binary_output = FALSE,
                   mc.cores = 2)
)
plotebv(amazon)

## Function 'sampleIndicator' is implemented to sample a metric of
## conditional entropy (default):
suppressWarnings(
def_condent <- sampleIndicator(def, side = 400, mc.cores = 2)
)
plotebv(def_condent)
```

tabuleRaster
Fast tabulation of pixel values

Description

This function generates frequency tables for scenes in ecosystem remote sensing products by wrapping `rasterDT`. The function is mapped by `gaugeIndicator` to optimize computation of ecosystem extents.

Usage

```r
tabuleRaster(layer = '',
             del0 = TRUE, useNA = "no",
             n256 = FALSE)
```
Arguments

layer character. File path to an ERSP scene.
del0 logical. Remove the 0-count categories.
useNA logical. Include NA values. This argument is passed to rasterDT::freqDT.
n256 logical. Do the raster contains less than 256 unique values?

Value
data.frame.

Author(s)
Wilson Lara Henao <wilarhen@gmail.com> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [aut], Maria C. Londono [aut]

Examples

```r
## \donttest{
## tabuleRaster(raster(volcano), n256 = FALSE)
## }`
Index

barplot, 2
barplot.EBVstats, 2

calculate_lsm, 7
cellStats, 3

EBVstats, 2, 3
echanges, 4, 7, 18

gaugeIndicator, 7, 14, 17, 19
data, 8
getGADM, 8, 10, 12, 16
getrsp, 10, 11, 12
getWRS, 11

labs, 14
list_lsm, 7, 18
listGP, 10, 12, 16

plotebv, 13
plotind, 14

rasterDT, 19
rsp2ebv, 5, 7, 15, 18

sample_lsm, 18
sampleIndicator, 7, 17

tabuleRaster, 7, 19
tibble, 14