Package ‘umap’

March 23, 2022

Title Uniform Manifold Approximation and Projection

Version 0.2.8.0

Author Tomasz Konopka [aut, cre]

Maintainer Tomasz Konopka <tokonopka@gmail.com>

Description Uniform manifold approximation and projection is a technique for dimension reduction. The algorithm was described by McInnes and Healy (2018) in <arXiv:1802.03426>. This package provides an interface for two implementations. One is written from scratch, including components for nearest-neighbor search and for embedding. The second implementation is a wrapper for 'python' package 'umap-learn' (requires separate installation, see vignette for more details).

Depends R (>= 3.1.2)

Imports Matrix, methods, openssl, reticulate, Rcpp (>= 0.12.6), RSpectra, stats

License MIT + file LICENSE

URL https://github.com/tkonopka/umap

BugReports https://github.com/tkonopka/umap/issues

LinkingTo Rcpp

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-03-23 20:30:02 UTC
R topics documented:

predict.umap .. 2
umap ... 3
umap.defaults .. 4
umap.knn .. 5

Description

project data points onto an existing umap embedding

Usage

S3 method for class 'umap'
predict(object, data, ...)

Arguments

object trained object of class umap
data matrix with data
... additional arguments (not used)

Value

new matrix

Examples

embedd iris dataset using default settings
iris.umap = umap(iris[,1:4])

create a dataset with structure like iris, but with perturbation
iris.perturbed = iris[,1:4] + matrix(rnorm(nrow(iris)*4, 0, 0.1), ncol=4)

project perturbed dataset
perturbed.embedding = predict(iris.umap, iris.perturbed)

output is a matrix with embedding coordinates
head(perturbed.embedding)
umap

Computes a manifold approximation and projection

Description
Computes a manifold approximation and projection

Usage

```r
umap(
  d,
  config = umap.defaults,
  method = c("naive", "umap-learn"),
  preserve.seed = TRUE,
  ...
)
```

Arguments

- `d` matrix, input data
- `config` object of class umap.config
- `method` character, implementation. Available methods are 'naive' (an implementation written in pure R) and 'umap-learn' (requires python package 'umap-learn')
- `preserve.seed` logical, leave TRUE to insulate external code from randomness within the umap algorithms; set FALSE to allow randomness used in umap algorithms to alter the external random-number generator
- `...` list of settings; values overwrite defaults from config; see documentation of umap.default for details about available settings

Value
object of class umap, containing at least a component with an embedding and a component with configuration settings

Examples

```r
# embedd iris dataset using default settings
iris.umap = umap(iris[,1:4])

# display object summary
iris.umap

# display embedding coordinates
head(iris.umap$layout)
```
umap.defaults

Default configuration for umap

Description
A list with parameters customizing a UMAP embedding. Each component of the list is an effective argument for umap().

Usage

umap.defaults

Format
An object of class umap.config of length 22.

Details

n_neighbors: integer; number of nearest neighbors
n_components: integer; dimension of target (output) space
metric: character or function; determines how distances between data points are computed. When using a string, available metrics are: euclidean, manhattan. Other available generalized metrics are: cosine, pearson, pearson2. Note the triangle inequality may not be satisfied by some generalized metrics, hence knn search may not be optimal. When using metric.function as a function, the signature must be function(matrix, origin, target) and should compute a distance between the origin column and the target columns
n_epochs: integer; number of iterations performed during layout optimization
input: character, use either "data" or "dist"; determines whether the primary input argument to umap() is treated as a data matrix or as a distance matrix
init: character or matrix. The default string "spectral" computes an initial embedding using eigenvectors of the connectivity graph matrix. An alternative is the string "random", which creates an initial layout based on random coordinates. This setting can also be set to a matrix, in which case layout optimization begins from the provided coordinates.
min_dist: numeric; determines how close points appear in the final layout
set_op_ratio_mix_ratio: numeric in range [0,1]; determines who the knn-graph is used to create a fuzzy simplicial graph
local_connectivity: numeric; used during construction of fuzzy simplicial set
bandwidth: numeric; used during construction of fuzzy simplicial set
alpha: numeric; initial value of "learning rate" of layout optimization
gamma: numeric; determines, together with alpha, the learning rate of layout optimization
negative_sample_rate: integer; determines how many non-neighbor points are used per point and per iteration during layout optimization
a: numeric; contributes to gradient calculations during layout optimization. When left at NA, a suitable value will be estimated automatically.
b: numeric; contributes to gradient calculations during layout optimization.
spread: numeric; used during automatic estimation of a/b parameters.
random_state: integer; seed for random number generation used during umap()
transform_state: integer; seed for random number generation used during predict()
knn: object of class umap.knn; precomputed nearest neighbors
knn.repeat: number of times to restart knn search
verbose: logical or integer; determines whether to show progress messages
umap_learn_args: vector of arguments to python package umap-learn

Examples

```r
# display all default settings
umap.defaults

# create a new settings object with n_neighbors set to 5
custom.settings = umap.defaults
custom.settings$n_neighbors = 5
custom.settings
```

Description

construct a umap.knn object describing nearest neighbors

Usage

```r
umap.knn(indexes, distances)
```

Arguments

- `indexes`: matrix, integers linking data points to nearest neighbors
- `distances`: matrix, distance values between pairs of points specified in the matrix of indexes

Value

object of class umap.knn, which is a list with matrices with indexes of nearest neighbors and distances to those neighbors
Examples

this example describes a set of three data points (indexes 1,2,3)
which are equidistant from each other. Hence the distance between
pairs (i, j) is 0 for i=j and 1 otherwise.
three.indexes = matrix(c(1,2,3,
 2,1,3,
 3,1,2), nrow=3, ncol=3)

three.distances = matrix(c(0, 1, 1,
 0, 1, 1,
 0, 1, 1), nrow=3, ncol=3)

umap.knn(three.indexes, three.distances)
Index

* datasets
 umap.defaults, 4

predict.umap, 2

umap, 3
umap.defaults, 4
umap.knn, 5