Package ‘campsis’

October 12, 2022

Type Package

Title Generic PK/PD Simulation Platform CAMPSIS

Version 1.3.0

Description A generic, easy-to-use and intuitive pharmacokinetic/pharmacodynamic (PK/PD) simulation platform based on R packages 'rxode2', 'RxODE' and 'mrgsolve'. CAMPSIS provides an abstraction layer over the underlying processes of writing a PK/PD model, assembling a custom dataset and running a simulation. CAMPSIS has a strong dependency to the R package 'campsismod', which allows to read/write a model from/to files and adapt it further on the fly in the R environment. Package 'campsis' allows the user to assemble a dataset in an intuitive manner. Once the user's dataset is ready, the package is in charge of preparing the simulation, calling 'rxode2', 'RxODE' or 'mrgsolve' (at the user's choice) and returning the results, for the given model, dataset and desired simulation settings.

License GPL (>= 3)

BugReports https://github.com/Calvagone/campsis/issues

Depends campsimod, R (>= 4.0.0)

Imports assertthat, digest, dplyr, ggplot2, MASS, methods, plyr, progress, purrr, rlang, stats, tibble, tidyr

Suggests bookdown, devtools, gridExtra, knitr, mrgsolve, pkgdown, markdown, roxygen2, RxODE, rxode2, stringr, testthat

VignetteBuilder knitr

Encoding UTF-8

Language en-US

RoxygenNote 7.1.2

Collate 'global.R' 'utilities.R' 'check.R' 'generic.R' 'seed.R'
'distribution.R' 'dataset_config.R' 'time_entry.R' 'occasion.R'
occurions.R' 'treatment_iov.R' 'treatment_iovs.R'
dose_adaptation.R' 'dose_adaptations.R' 'treatment_entry.R'

R topics documented:

'treatment.R' 'observations.R' 'observations_set.R'
'covariate.R' 'covariates.R' 'bootstrap.R' 'protocol.R' 'arm.R'
'arms.R' 'event.R' 'events.R' 'scenario.R' 'scenarios.R'
'simulation_engine.R' 'dataset.R' 'parameter_uncertainty.R'
'event_logic.R' 'simulation_progress.R' 'dataset_summary.R'
'simulate_preprocess.R' 'simulate.R' 'results_processing.R'
'default_plot.R'

NeedsCompilation no

Author Nicolas Luyckx [aut, cre]

Maintainer Nicolas Luyckx <nicolas.luyckx@calvagone.com>

Repository CRAN

Date/Publication 2022-06-01 10:20:07 UTC

R topics documented:

applyCompartmentCharacteristics .. 4
Arm ... 5
arm-class .. 5
arms-class .. 6
Bolus ... 6
bolus-class .. 7
Bootstrap ... 7
bootstrap-class ... 8
BootstrapDistribution .. 8
bootstrap_distribution-class ... 9
ConstantDistribution ... 9
costant_distribution-class ... 10
Covariate .. 10
covariate-class ... 10
covariates-class ... 10
Dataset ... 11
dataset-class ... 11
DatasetConfig ... 12
dataset_config-class ... 12
DiscreteDistribution ... 13
distribution-class ... 13
DoseAdaptation .. 13
dose_adaptation-class ... 14
dose_adaptations-class .. 14
dosingOnly .. 14
EtaDistribution ... 15
Event ... 15
event-class .. 16
EventCovariate ... 16
Events ... 17
events-class .. 17
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>event_covariate-class</td>
<td>17</td>
</tr>
<tr>
<td>FixedDistribution</td>
<td>18</td>
</tr>
<tr>
<td>fixed_covariate-class</td>
<td>18</td>
</tr>
<tr>
<td>fixed_distribution-class</td>
<td>18</td>
</tr>
<tr>
<td>FunctionDistribution</td>
<td>19</td>
</tr>
<tr>
<td>function_distribution-class</td>
<td>19</td>
</tr>
<tr>
<td>generateIV</td>
<td>20</td>
</tr>
<tr>
<td>getCovariates</td>
<td>20</td>
</tr>
<tr>
<td>getEventCovariates</td>
<td>21</td>
</tr>
<tr>
<td>getFixedCovariates</td>
<td>21</td>
</tr>
<tr>
<td>getIOVs</td>
<td>22</td>
</tr>
<tr>
<td>getOccasions</td>
<td>23</td>
</tr>
<tr>
<td>getSeedForDatasetExport</td>
<td>23</td>
</tr>
<tr>
<td>getSeedForIteration</td>
<td>24</td>
</tr>
<tr>
<td>getSeedForParametersSampling</td>
<td>24</td>
</tr>
<tr>
<td>getTimes</td>
<td>25</td>
</tr>
<tr>
<td>getTimeVaryingCovariates</td>
<td>26</td>
</tr>
<tr>
<td>Infusion</td>
<td>26</td>
</tr>
<tr>
<td>infusion-class</td>
<td>27</td>
</tr>
<tr>
<td>IOV</td>
<td>28</td>
</tr>
<tr>
<td>length,arm-method</td>
<td>28</td>
</tr>
<tr>
<td>length,dataset-method</td>
<td>29</td>
</tr>
<tr>
<td>LogNormalDistribution</td>
<td>29</td>
</tr>
<tr>
<td>mrgsolve_engine-class</td>
<td>30</td>
</tr>
<tr>
<td>NormalDistribution</td>
<td>30</td>
</tr>
<tr>
<td>Observations</td>
<td>30</td>
</tr>
<tr>
<td>observations-class</td>
<td>31</td>
</tr>
<tr>
<td>observations_set-class</td>
<td>31</td>
</tr>
<tr>
<td>obsOnly</td>
<td>31</td>
</tr>
<tr>
<td>Occasion</td>
<td>32</td>
</tr>
<tr>
<td>occasion-class</td>
<td>32</td>
</tr>
<tr>
<td>occasions-class</td>
<td>32</td>
</tr>
<tr>
<td>ParameterDistribution</td>
<td>33</td>
</tr>
<tr>
<td>PI</td>
<td>33</td>
</tr>
<tr>
<td>protocol-class</td>
<td>34</td>
</tr>
<tr>
<td>retrieveParameterValue</td>
<td>34</td>
</tr>
<tr>
<td>rxode_engine-class</td>
<td>34</td>
</tr>
<tr>
<td>sample</td>
<td>35</td>
</tr>
<tr>
<td>Scenario</td>
<td>36</td>
</tr>
<tr>
<td>scenario-class</td>
<td>36</td>
</tr>
<tr>
<td>Scenarios</td>
<td>37</td>
</tr>
<tr>
<td>scenarios-class</td>
<td>37</td>
</tr>
<tr>
<td>setLabel</td>
<td>37</td>
</tr>
<tr>
<td>setSubjects</td>
<td>38</td>
</tr>
<tr>
<td>shadedPlot</td>
<td>38</td>
</tr>
<tr>
<td>simulate</td>
<td>39</td>
</tr>
<tr>
<td>SimulationProgress</td>
<td>43</td>
</tr>
<tr>
<td>simulation_engine-class</td>
<td>43</td>
</tr>
</tbody>
</table>
applyCompartmentCharacteristics

Apply compartment characteristics from model. In practice, only compartment infusion duration needs to be applied.

Description

Apply compartment characteristics from model. In practice, only compartment infusion duration needs to be applied.

Usage

applyCompartmentCharacteristics(table, properties)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>table</td>
<td>current dataset</td>
</tr>
<tr>
<td>properties</td>
<td>compartment properties from model</td>
</tr>
</tbody>
</table>

Value

updated dataset
Arm

Create a treatment arm.

Description
Create a treatment arm.

Usage
Arm(id = as.integer(NA), subjects = 1, label = as.character(NA))

Arguments
- id: unique identifier for this arm (available through dataset), integer. If NA (default), this identifier is auto-incremented.
- subjects: number of subjects in arm, integer
- label: arm label, single character string. If set, this label will be output in the ARM column of CAMPSIS instead of the identifier.

Value
an arm

arm-class
Arm class.

Description
Arm class.

Slots
- id: arm unique ID, integer
- subjects: number of subjects in arm, integer
- label: arm label, single character string
- protocol: protocol
- covariates: covariates
- bootstrap: covariates to be bootstrapped
arms-class

Arms class.

Description

Arms class.

Bolus

Create one or several bolus(es).

Description

Create one or several bolus(es).

Usage

Bolus(
 time,
 amount,
 compartment = NA,
 f = NULL,
 lag = NULL,
 ii = NULL,
 addl = NULL
)

Arguments

time
treatment time(s), numeric value or vector. First treatment time if used together with ii and addl.

amount
amount to give as bolus, single numeric value

compartment
compartment index, single integer value

f
fraction of dose amount, distribution

lag
dose lag time, distribution

ii
interdose interval, requires argument 'time' to be a single numeric value

addl
number of additional doses, requires argument 'time' to be a single integer value

Value

a single bolus or a list of boluses
bolus-class

Bolus class.

Description

Bolus class.

Bootstrap

Create a bootstrap object.

Description

Create a bootstrap object.

Usage

Bootstrap(
 data,
 id = "BS_ID",
 replacement = FALSE,
 random = FALSE,
 export_id = FALSE
)

Arguments

data | data frame to be bootstrapped. It must have a unique identifier column named according to the specified argument 'id' (default value is 'BS_ID'). Other columns are covariates to bootstrap. They must all be numeric. Whatever the configuration of the bootstrap, these covariates are always read row by row and belong to a same individual.
id | unique identifier column name in data
replacement | values can be reused or not when drawn, logical
random | values are drawn randomly, logical
export_id | tell CAMPSIS if the identifier 'BS_ID' must be output or not, logical

Value

a bootstrap object
BootstrapDistribution

Create a bootstrap distribution. During function sampling, CAMPSIS will generate values depending on the given data and arguments.

Description

Create a bootstrap distribution. During function sampling, CAMPSIS will generate values depending on the given data and arguments.

Usage

```r
BootstrapDistribution(data, replacement = FALSE, random = FALSE)
```

Arguments

- **data**: values to draw, numeric vector
- **replacement**: values can be reused or not, logical
- **random**: values are drawn randomly, logical

Value

a bootstrap distribution
bootstrap_distribution-class

Bootstrap distribution class.

Description

Bootstrap distribution class.

Slots

data values to draw, numeric vector
replacement values can be reused or not, logical
random values are drawn randomly, logical

ConstantDistribution

Create a constant distribution. Its value will be constant across all generated samples.

Description

Create a constant distribution. Its value will be constant across all generated samples.

Usage

\[\text{ConstantDistribution}(\text{value})\]

Arguments

value covariate value, single numeric value

Value

a constant distribution (same value for all samples)

constant_distribution-class

Constant distribution class.

Description

Constant distribution class.

Slots

value covariate value, single numeric value
Create a non time-varying (fixed) covariate.

Usage

`Covariate(name, distribution)`

Arguments

- **name**: covariate name, single character value
- **distribution**: covariate distribution

Value

a fixed covariate

Covariate class.

Description

Covariate class.

Slots

- **name**: covariate name, single character value
- **distribution**: covariate distribution

Covariates class.

Description

Covariates class.
Create a dataset.

Usage

Dataset(subjects = NULL)

Arguments

subjects number of subjects in the default arm

Value

a dataset

slots

arms a list of treatment arms

config dataset configuration for export

iiv data frame containing the inter-individual variability (all ETAS) for the export
DatasetConfig

Create a dataset configuration. This configuration allows CAMPSIS to know which are the default depot and observed compartments.

Usage

```r
DatasetConfig(
  defDepotCmt = 1,
  defObsCmt = 1,
  exportTSLD = FALSE,
  exportTDOS = FALSE
)
```

Arguments

- `defDepotCmt`: default depot compartment, integer
- `defObsCmt`: default observation compartment, integer
- `exportTSLD`: export column TSLD (time since last dose), logical
- `exportTDOS`: export column TDOS (time of last dose), logical

Value

a dataset configuration

dataset_config-class

Description

Dataset configuration class.

Slots

- `def_depot_cmt`: default depot compartment, integer
- `def_obs_cmt`: default observation compartment, integer
- `export_tsl`: export column TSLD, logical
- `export_tdos`: export column TDOS, logical
DiscreteDistribution
Discrete distribution.

Description
Discrete distribution.

Usage
DiscreteDistribution(x, prob, replace = TRUE)

Arguments
x: vector of one or more integers from which to choose
prob: a vector of probability weights for obtaining the elements of the vector being sampled
replace: should sampling be with replacement, default is TRUE

Value
a discrete distribution

Distribution class
Distribution class. See this class as an interface.

DoseAdaptation
Create a dose adaptation.

Description
Create a dose adaptation.

Usage
DoseAdaptation(formula, compartments = integer(0))

Arguments
formula: formula to apply, single character string, e.g. "AMT*WT"
compartments: compartment numbers where the formula needs to be applied, integer vector. Default is integer(0) (formula applied on all compartments)
dosingOnly

Value

a fixed covariate

dose_adaptation-class

Dose adaptation class.

Description

Dose adaptation class.

Slots

formula formula to apply, single character string, e.g. "AMT*WT"

compartments compartment numbers where the formula needs to be applied

dose_adaptations-class

Dose adaptations class.

Description

Dose adaptations class.

dosingOnly

Filter CAMPSIS output on dosing rows.

Description

Filter CAMPSIS output on dosing rows.

Usage

dosingOnly(x)

Arguments

x data frame, CAMPSIS output

Value

a data frame with the dosing rows
EtaDistribution

Create an ETA distribution. The resulting distribution is a normal distribution, with mean=0 and sd=sqrt(OMEGA).

Description

Create an ETA distribution. The resulting distribution is a normal distribution, with mean=0 and sd=sqrt(OMEGA).

Usage

EtaDistribution(model, omega)

Arguments

- `model`: model
- `omega`: corresponding THETA name, character

Value

an ETA distribution

Event

Create an interruption event.

Description

Create an interruption event.

Usage

Event(name = NULL, times, fun, debug = FALSE)

Arguments

- `name`: event name, character value
- `times`: interruption times, numeric vector
- `fun`: event function to apply at each interruption
- `debug`: output the variables that were changed through this event

Value

an event definition
Description

Event class.

Slots

- **name**: event name, character value
- **times**: interruption times, numeric vector
- **fun**: event function to apply at each interruption
- **debug**: output the variables that were changed through this event

Usage

```r
EventCovariate(name, distribution)
```

Arguments

- **name**: covariate name, character
- **distribution**: covariate distribution at time 0

Value

a time-varying covariate
Events

Create a list of interruption events.

Description

Create a list of interruption events.

Usage

Events()

Value

a events object

events-class

Events class.

Description

Events class.

event_covariate-class

Event covariate class.

Description

Event covariate class.
FixedDistribution Create a fixed distribution. Each sample will be assigned a fixed value coming from vector 'values'.

Description
Create a fixed distribution. Each sample will be assigned a fixed value coming from vector 'values'.

Usage
FixedDistribution(values)

Arguments
values covariate values, numeric vector (1 value per sample)

Value
a fixed distribution (1 value per sample)

fixed_covariate-class Fixed covariate class.

Description
Fixed covariate class.

fixed_distribution-class Fixed distribution class.

Description
Fixed distribution class.

Slots
values covariate values, numeric vector (1 value per sample)
FunctionDistribution

Create a function distribution. During distribution sampling, the provided function will be responsible for generating values for each sample. If first argument of this function is not the size (n), please tell which argument corresponds to the size 'n' (e.g. list(size="n")).

Description

Create a function distribution. During distribution sampling, the provided function will be responsible for generating values for each sample. If first argument of this function is not the size (n), please tell which argument corresponds to the size 'n' (e.g. list(size="n")).

Usage

FunctionDistribution(fun, args)

Arguments

- fun: function name, character (e.g. 'rnorm')
- args: list of arguments (e.g. list(mean=70, sd=10))

Value

a function distribution

Function distribution class

Function distribution class.

Description

Function distribution class.

Slots

- fun: function name, character (e.g. 'rnorm')
- args: list of arguments (e.g. list(mean=70, sd=10))
generateIIV

Generate IIV.

Description
Generate IIV.

Usage
generateIIV(omega, n)

Arguments
omega omega matrix
n number of subjects

Value
IIV data frame

generateIIV

getCovariates

Get all covariates (fixed / time-varying / event covariates).

Description
Get all covariates (fixed / time-varying / event covariates).

Usage
getcovariates(object)

S4 method for signature 'covariates'
getcovariates(object)

S4 method for signature 'arm'
getcovariates(object)

S4 method for signature 'arms'
getcovariates(object)

S4 method for signature 'dataset'
getcovariates(object)

Arguments
object any object
getEventCovariates

Value
all covariates from object

getEventCovariates Get all event-related covariates.

Description
Get all event-related covariates.

Usage
getEventCovariates(object)

S4 method for signature 'covariates'
getEventCovariates(object)

S4 method for signature 'arm'
getEventCovariates(object)

S4 method for signature 'arms'
getEventCovariates(object)

S4 method for signature 'dataset'
getEventCovariates(object)

Arguments
object any object

Value
all event-related covariates from object

getFixedCovariates

Get fixed covariates.

Description
Get all fixed covariates.
getIOVs

Usage
getIOVs(object)

S4 method for signature 'arm'
getIOVs(object)

S4 method for signature 'arms'
getIOVs(object)

S4 method for signature 'dataset'
getIOVs(object)

Arguments

object any object

Value

all fixed covariates from object

Description

Get all IOV objects.

Usage
getIOVs(object)

S4 method for signature 'arm'
getIOVs(object)

S4 method for signature 'arms'
getIOVs(object)

S4 method for signature 'dataset'
getIOVs(object)

Arguments

object any object
getOccasions

Value
all IOV’s from object

Description
Get all occasions.

Usage
getOccasions(object)

S4 method for signature 'arm'
getOccasions(object)

S4 method for signature 'arms'
getOccasions(object)

S4 method for signature 'dataset'
getOccasions(object)

Arguments
object any object

Value
all occasions from object

generateDatasetExport

getSeedForDatasetExport

Get seed for dataset export.

Description
Get seed for dataset export.

Usage
generateDatasetExport(seed, replicate, iterations)
getSeedForParametersSampling

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seed</td>
<td>original seed</td>
</tr>
<tr>
<td>replicate</td>
<td>the current replicate number</td>
</tr>
<tr>
<td>iterations</td>
<td>total number of iterations</td>
</tr>
</tbody>
</table>

Value

the seed value used to export the dataset

getSeedForIteration
Get seed for iteration.

Description

Get seed for iteration.

Usage

```
getSeedForIteration(seed, replicate, iterations, iteration)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seed</td>
<td>original seed</td>
</tr>
<tr>
<td>replicate</td>
<td>the current replicate number</td>
</tr>
<tr>
<td>iterations</td>
<td>total number of iterations</td>
</tr>
<tr>
<td>iteration</td>
<td>current iteration number</td>
</tr>
</tbody>
</table>

Value

the seed value to be used for the given replicate number and iteration

getSeedForParametersSampling
Get seed for parameter uncertainty sampling.

Description

Get seed for parameter uncertainty sampling.

Usage

```
getSeedForParametersSampling(seed)
```
getTimes

Arguments

seed original seed

Value

the seed value used to sample parameter uncertainty

getTimes Get all distinct times for the specified object.

Description

Get all distinct times for the specified object.

Usage

getTimes(object)

S4 method for signature 'observations_set'
getTimes(object)

S4 method for signature 'arm'
getTimes(object)

S4 method for signature 'arms'
getTimes(object)

S4 method for signature 'events'
getTimes(object)

S4 method for signature 'dataset'
getTimes(object)

Arguments

object any object

Value

numeric vector with all unique times, sorted
getTimeVaryingCovariates

Get all time-varying covariates.

Description

Get all time-varying covariates.

Usage

```r
getTimeVaryingCovariates(object)
```

S4 method for signature 'covariates'
getTimeVaryingCovariates(object)

S4 method for signature 'arm'
getTimeVaryingCovariates(object)

S4 method for signature 'arms'
getTimeVaryingCovariates(object)

S4 method for signature 'dataset'
getTimeVaryingCovariates(object)

Arguments

`object` any object

Value

all time-varying covariates from object

Infusion

Create one or several infusion(s).

Description

Create one or several infusion(s).
Usage

Infusion(
 time,
 amount,
 compartment = NA,
 f = NULL,
 lag = NULL,
 duration = NULL,
 rate = NULL,
 ii = NULL,
 addl = NULL
)

Arguments

time treatment time(s), numeric value or vector. First treatment time if used together with ii and addl.
amount total amount to infuse, numeric
compartment compartment index, integer
f fraction of infusion amount, distribution
lag infusion lag time, distribution
duration infusion duration, distribution
rate infusion rate, distribution
ii interdose interval, requires argument 'time' to be a single numeric value
addl number of additional doses, requires argument 'time' to be a single integer value

Value

a single infusion or a list of infusions.

infusion-class
Infusion class.

Description

Infusion class.

Slots

duration infusion duration, distribution
rate infusion rate, distribution
Define inter-occasion variability (IOV) into the dataset. A new variable of name 'colname' will be output into the dataset and will vary at each dose number according to the given distribution.

Description

Define inter-occasion variability (IOV) into the dataset. A new variable of name 'colname' will be output into the dataset and will vary at each dose number according to the given distribution.

Usage

IOV(colname, distribution, doseNumbers = NULL)

Arguments

- **colname**: name of the column that will be output in dataset
- **distribution**: distribution
- **doseNumbers**: dose numbers, if provided, IOV is generated at these doses only. By default, IOV is generated for all doses.

Value

an IOV object

Return the number of subjects contained in this arm.

Description

Return the number of subjects contained in this arm.

Usage

S4 method for signature 'arm'

length(x)

Arguments

- **x**: arm

Value

a number
length.dataset-method

Return the number of subjects contained in this dataset.

Description

Return the number of subjects contained in this dataset.

Usage

```r
## S4 method for signature 'dataset'
length(x)
```

Arguments

- `x` dataset

Value

a number

LogNormalDistribution

Create a log normal distribution.

Description

Create a log normal distribution.

Usage

```r
LogNormalDistribution(meanlog, sdlog)
```

Arguments

- `meanlog` mean value of distribution in log domain
- `sdlog` standard deviation of distribution in log domain

Value

a log normal distribution
mrgsolve_engine-class
$mrgsolve$ engine class.

Description
$mrgsolve$ engine class.

NormalDistribution
Create a normal distribution.

Description
Create a normal distribution.

Usage
`NormalDistribution(mean, sd)`

Arguments

- `mean`
 mean value of distribution

- `sd`
 standard deviation of distribution

Value
a normal distribution

Observations
Create an observations list. Please note that the provided 'times' will automatically be sorted. Duplicated times will be removed.

Description
Create an observations list. Please note that the provided 'times' will automatically be sorted. Duplicated times will be removed.

Usage
`Observations(times, compartment = NA)`

Arguments

- `times`
 observation times, numeric vector

- `compartment`
 compartment index, integer
observations-class

Value

an observations list

Description

Observations class.

Slots

times observation times, numeric vector

compartment compartment index, integer
dv observed values, numeric vector (FOR EXTERNAL USE)

observations_set-class

Observations set class.

Description

Observations set class.

obsOnly

Filter CAMPSIS output on observation rows.

Description

Filter CAMPSIS output on observation rows.

Usage

obsOnly(x)

Arguments

x data frame, CAMPSIS output

Value

a data frame with the observation rows
Occasion

Define a new occasion. Occasions are defined by mapping occasion values to dose numbers. A new column will automatically be created in the exported dataset.

Usage

Occasion(colname, values, doseNumbers)

Arguments

colname name of the column that will be output in dataset
values the occasion numbers, any integer vector
doseNumbers the related dose numbers, any integer vector of same length as 'values'

Value

occasion object

occasion-class Occasion class.

Description

Occasion class.

Slots

colname single character value representing the column name related to this occasion
values occasion values, integer vector, same length as dose_numbers
dose_numbers associated dose numbers, integer vector, same length as values

occasions-class Occasions class.

Description

Occasions class.
ParameterDistribution

Create a parameter distribution. The resulting distribution is a log-normal distribution, with mean-log=log(THETA) and sd-log=sqrt(OMEGA).

Description

Create a parameter distribution. The resulting distribution is a log-normal distribution, with mean-log=log(THETA) and sd-log=sqrt(OMEGA).

Usage

ParameterDistribution(model, theta, omega = NULL)

Arguments

model model
theta corresponding THETA name, character
omega corresponding OMEGA name, character, NULL if not defined

Value

a parameter distribution

PI

Compute the prediction interval summary over time.

Description

Compute the prediction interval summary over time.

Usage

PI(x, output, scenarios = NULL, level = 0.9, gather = TRUE)

Arguments

x data frame
output variable to show, character value
scenarios scenarios, character vector, NULL is default
level PI level, default is 0.9 (90% PI)
gather FALSE: med, low & up columns, TRUE: metric column

Value

a summary table
Protocol class.

Description

Protocol class.

retrieveParameterValue

Retrieve the parameter value (standardized) for the specified parameter name.

Description

Retrieve the parameter value (standardized) for the specified parameter name.

Usage

retrieveParameterValue(model, paramName, default = NULL, mandatory = FALSE)

Arguments

model model
paramName parameter name
default default value if not found
mandatory must be in model or not

Value

the standardized parameter value or the given default value if not found

RxODE/rxode2 engine class.

Description

RxODE/rxode2 engine class.

Slots

rxode2 logical field to indicate if CAMPSIS should use rxode2 (field set to TRUE) or RxODE (field set to FALSE). Default is TRUE.
Sample generic object.

Usage

```
sample(object, n, ...)
```

S4 method for signature 'constant_distribution, integer'
```
sample(object, n)
```

S4 method for signature 'fixed_distribution, integer'
```
sample(object, n)
```

S4 method for signature 'function_distribution, integer'
```
sample(object, n)
```

S4 method for signature 'bootstrap_distribution, integer'
```
sample(object, n)
```

S4 method for signature 'bolus, integer'
```
sample(object, n, ...)
```

S4 method for signature 'infusion, integer'
```
sample(object, n, ...)
```

S4 method for signature 'observations, integer'
```
sample(object, n, ...)
```

S4 method for signature 'covariate, integer'
```
sample(object, n)
```

S4 method for signature 'bootstrap, integer'
```
sample(object, n)
```

S4 method for signature 'campsis_model, integer'
```
sample(object, n)
```

Arguments

- `object`: generic object
- `n`: number of samples required
- `...`: extra arguments
Scenario
Create an scenario.

Description
Create an scenario.

Usage

```r
Scenario(name = NULL, model = NULL, dataset = NULL)
```

Arguments

- `name`: scenario name, single character string
- `model`: either a CAMPSIS model, a function or lambda-style formula
- `dataset`: either a CAMPSIS dataset, a function or lambda-style formula

Value

a new scenario

scenario-class
Scenario class.

Description

Scenario class.

Slots

- `name`: scenario name, single character string
- `model`: either a CAMPSIS model, a function or lambda-style formula
- `dataset`: either a CAMPSIS dataset, a function or lambda-style formula
Scenarios

Scenarios

Create a list of scenarios.

Description

Create a list of scenarios.

Usage

Scenarios()

Value

a scenarios object

scenarios-class

Scenarios class.

Description

Scenarios class.

setLabel

Set the label.

Description

Set the label.

Usage

setLabel(object, x)

S4 method for signature 'arm,character'
setLabel(object, x)

Arguments

object any object that has a label
x the new label

Value

the updated object
setSubjects

Set the number of subjects.

Description

Set the number of subjects.

Usage

```r
setSubjects(object, x)
```

S4 method for signature 'arm, integer'

```r
setSubjects(object, x)
```

S4 method for signature 'dataset, integer'

```r
setSubjects(object, x)
```

Arguments

- `object` any object
- `x` the new number of subjects

Value

the updated object

shadedPlot

Shaded plot (or prediction interval plot).

Description

Shaded plot (or prediction interval plot).

Usage

```r
shadedPlot(x, output, scenarios = NULL, level = 0.9, alpha = 0.25)
```

Arguments

- `x` data frame
- `output` variable to show
- `scenarios` scenarios
- `level` PI level, default is 0.9 (90% PI)
- `alpha` alpha parameter (transparency) given to geom_ribbon
Value

a ggplot object

simulate

Simulate function.

Description

Simulate function.

Usage

simulate(
 model,
 dataset,
 dest = NULL,
 events = NULL,
 scenarios = NULL,
 tablefun = NULL,
 outvars = NULL,
 outfun = NULL,
 seed = NULL,
 replicates = 1,
 nocb = NULL,
 dosing = FALSE,
 ...
)

S4 method for signature
'campsis_model,
dataset,
character,
integer,
scenarios,
'function',
character,
'function',
integer,
integer,
logical,
logical'

simulate(
 model,
 dataset,
 dest = NULL,
 events = NULL,
scenarios = NULL,
tablefun = NULL,
outvars = NULL,
outfun = NULL,
seed = NULL,
replicates = 1,
nocab = NULL,
dosing = FALSE,
...)

S4 method for signature
'campsis_model, tbl_df, character, events, scenarios,
'function', character, 'function', integer, integer, logical, logical'
simulate(
 model, dataset, dest = NULL, events = NULL, scenarios = NULL,
 tablefun = NULL, outvars = NULL, outfun = NULL, seed = NULL,
 replicates = 1, nocb = NULL, dosing = FALSE,
 ...)

S4 method for signature
'campsis_model, data.frame, character, events, scenarios,
'function', character,
simulate

`function`,
integer,
integer,
logical,
logical
simulate(
 model,
 dataset,
 dest = NULL,
 events = NULL,
 scenarios = NULL,
 tablefun = NULL,
 outvars = NULL,
 outfun = NULL,
 seed = NULL,
 replicates = 1,
 nocb = NULL,
 dosing = FALSE,
 ...
)

S4 method for signature
'campsis_model,
tbl_df,
rxode_engine,
events,
scenarios,
`function`,
character,
`function`,
integer,
integer,
logical,
logical
simulate(
 model,
 dataset,
 dest = NULL,
 events = NULL,
 scenarios = NULL,
 tablefun = NULL,
 outvars = NULL,
 outfun = NULL,
 seed = NULL,
 replicates = 1,
 nocb = NULL,
 dosing = FALSE,
 ...
)
S4 method for signature
'campsis_model,
tbl_df,
mrgsolve_engine,
events,
scenarios,
'function',
'function',
integer,
integer,
logical,
logical'
simulate(
 model,
 dataset,
 dest = NULL,
 events = NULL,
 scenarios = NULL,
 tablefun = NULL,
 outvars = NULL,
 outfun = NULL,
 seed = NULL,
 replicates = 1,
 nocb = NULL,
 dosing = FALSE,
 ...
)

Arguments

model generic CAMPSIS model
dataset CAMPSIS dataset or 2-dimensional table
dest destination simulation engine, default is 'RxODE'
events interruption events
scenarios list of scenarios to be simulated
tablefun function or lambda formula to apply on exported 2-dimensional dataset
outvars variables to output in resulting dataframe
outfun function or lambda formula to apply on resulting dataframe after each replicate
seed seed value
replicates number of replicates, default is 1
nocb next-observation carried backward mode (NOCB), default value is TRUE for mrgsolve, FALSE for RxODE
dosing output dosing information, default is FALSE
... optional arguments like 'declare' and 'nocbvars'
SimulationProgress

Value
dataframe with all results

Description
Create a simulation progress object.

Usage
SimulationProgress(replicates = 1, scenarios = 1)

Arguments
replicates total number of replicates to simulate
scenarios total number of scenarios to simulate

Value
a progress bar

simulation_engine-class
Simulation engine class.

Description
Simulation engine class.
spaghettiPlot

simulation_progress-class

Simulation progress class.

Description

Simulation progress class.

Arguments

- `replicates` total number of replicates to simulate
- `scenarios` total number of scenarios to simulate
- `iterations` total number of iterations to simulate
- `slices` total number of slices to simulate
- `replicate` current replicate number being simulated
- `scenario` current scenario number being simulated
- `iteration` current iteration number being simulated
- `slice` current slice number being simulated

spaghettiPlot

Spaghetti plot.

Description

Spaghetti plot.

Usage

`spaghettiPlot(x, output, scenarios = NULL)`

Arguments

- `x` data frame
- `output` variable to show
- `scenarios` scenarios

Value

plot
TimeVaryingCovariate

Create a time-varying covariate. This covariate will be implemented using EVID=2 rows in the exported dataset and will not use interruption events.

Description

Create a time-varying covariate. This covariate will be implemented using EVID=2 rows in the exported dataset and will not use interruption events.

Usage

TimeVaryingCovariate(name, table)

Arguments

name covariate name, character

table data.frame, must contain the mandatory columns 'TIME' and 'VALUE'. An 'ID' column may also be specified. In that case, ID's between 1 and the max number of subjects in the dataset/arm can be used. All ID's must have a VALUE defined for TIME 0.

Value

a time-varying covariate

time_varying_covariate-class

Time-varying covariate class.

Description

Time-varying covariate class.

treatment-class

Treatment class.

Description

Treatment class.
treatment_iov-class
Treatment IOV class.

Description

Treatment IOV class.

Slots

- colname: name of the column that will be output in dataset
- distribution: distribution
- dose_numbers: associated dose numbers, integer vector, same length as values

treatment_iovs-class
Treatment IOV’s class.

Description

Treatment IOV’s class.

undefined_distribution-class

Undefined distribution class. This type of object is automatically created in method toExplicitDistribution() when the user does not provide a concrete distribution. This is because S4 objects do not accept NULL values.

Description

Undefined distribution class. This type of object is automatically created in method toExplicitDistribution() when the user does not provide a concrete distribution. This is because S4 objects do not accept NULL values.
UniformDistribution

Create an uniform distribution.

Description

Create an uniform distribution.

Usage

UniformDistribution(min, max)

Arguments

- min: min value
- max: max value

Value

an uniform distribution

VPC

Compute the VPC summary. Input data frame must contain the following columns: - replicate: replicate number - low: low percentile value in replicate (and in scenario if present) - med: median value in replicate (and in scenario if present) - up: up percentile value in replicate (and in scenario if present) - any scenario column

Description

Compute the VPC summary. Input data frame must contain the following columns: - replicate: replicate number - low: low percentile value in replicate (and in scenario if present) - med: median value in replicate (and in scenario if present) - up: up percentile value in replicate (and in scenario if present) - any scenario column

Usage

VPC(x, scenarios = NULL, level = 0.9)

Arguments

- x: data frame
- scenarios: scenarios, character vector, NULL is default
- level: PI level, default is 0.9 (90% PI)
VPC summary with columns TIME, scenarios and all combinations of low, med, up (i.e. low_low, low_med, low_up, etc.)

Usage

```
vpcPlot(x, scenarios = NULL, level = 0.9, alpha = 0.15)
```

Arguments

- `x`: data frame, output of CAMPSIS with replicates
- `scenarios`: scenarios, character vector, NULL is default
- `level`: PI level, default is 0.9 (90% PI)
- `alpha`: alpha parameter (transparency) given to geom_ribbon

Value

a ggplot object
Index

applyCompartmentCharacteristics, 4
Arm, 5
arm-class, 5
arms-class, 6
Bolus, 6
bolus-class, 7
Bootstrap, 7
bootstrap-class, 8
bootstrap_distribution-class, 9
BootstrapDistribution, 8
constant_distribution-class, 9
ConstantDistribution, 9
Covariate, 10
covariate-class, 10
covariates-class, 10
Dataset, 11
dataset-class, 11
dataset_config-class, 12
DatasetConfig, 12
DiscreteDistribution, 13
distribution-class, 13
dose_adaptation-class, 14
dose_adaptations-class, 14
DoseAdaptation, 13
dosingOnly, 14
EtaDistribution, 15
Event, 15
event-class, 16
event_covariate-class, 17
EventCovariate, 16
Events, 17
events-class, 17
fixed_covariate-class, 18
fixed_distribution-class, 18
FixedDistribution, 18
function_distribution-class, 19
FunctionDistribution, 19
generateIIV, 20
getCovariates, 20
ggetCovariates,arm-method
 (getCovariates), 20
getCovariates,arms-method
 (getCovariates), 20
getCovariates,covariates-method
 (getCovariates), 20
getCovariates,dataset-method
 (getCovariates), 20
ggetEventCovariates, 21
getEventCovariates,arm-method
 (getEventCovariates), 21
getEventCovariates,arms-method
 (getEventCovariates), 21
getEventCovariates,covariates-method
 (getEventCovariates), 21
getEventCovariates,dataset-method
 (getEventCovariates), 21
getFixedCovariates, 21
getFixedCovariates,arm-method
 (getFixedCovariates), 21
getFixedCovariates,arms-method
 (getFixedCovariates), 21
getFixedCovariates,covariates-method
 (getFixedCovariates), 21
getFixedCovariates,dataset-method
 (getFixedCovariates), 21
ggetIOVs, 22
getIOVs,arm-method (getIOVs), 22
getIOVs,arms-method (getIOVs), 22
getIOVs,dataset-method (getIOVs), 22
ggetOccasions, 23
getOccasions,arm-method (getOccasions), 23
getOccasions,arms-method
 (getOccasions), 23
getOccasions, dataset-method (getOccasions), 23
getSeedForDatasetExport, 23
getSeedForIteration, 24
getSeedForParametersSampling, 24
getTimes, 25
getTimes, arm-method (getTimes), 25
getTimes, arms-method (getTimes), 25
getTimes, dataset-method (getTimes), 25
getTimes, events-method (getTimes), 25
getTimes, observations_set-method (getTimes), 25
getTimeVaryingCovariates, 26
getimeVaryingCovariates, arm-method (getTimeVaryingCovariates), 26
getimeVaryingCovariates, arms-method (getTimeVaryingCovariates), 26
getimeVaryingCovariates, covariates-method (getTimeVaryingCovariates), 26
getimeVaryingCovariates, dataset-method (getTimeVaryingCovariates), 26
Infusion, 26
infusion-class, 27
IOV, 28
length, arm-method, 28
length, dataset-method, 29
LogNormalDistribution, 29
mrgsolve_engine-class, 30
NormalDistribution, 30
Observations, 30
observations-class, 31
observations_set-class, 31
obsOnly, 31
Occasion, 32
occasion-class, 32
occasions-class, 32
ParameterDistribution, 33
PI, 33
protocol-class, 34
retrieveParameterValue, 34
rxode_engine-class, 34
sample, 35
sample, bolus, integer-method (sample), 35
sample, bootstrap, integer-method (sample), 35
sample, bootstrap_distribution, integer-method (sample), 35
sample, campsis_model, integer-method (sample), 35
sample, constant_distribution, integer-method (sample), 35
sample, covariate, integer-method (sample), 35
sample, fixed_distribution, integer-method (sample), 35
sample, function_distribution, integer-method (sample), 35
sample, infusion, integer-method (sample), 35
sample, observations, integer-method (sample), 35
Scenario, 36
scenario-class, 36
Scenarios, 37
scenarios-class, 37
setLabel, 37
setLabel, arm, character-method (setLabel), 37
setSubjects, 38
setSubjects, arm, integer-method (setSubjects), 38
setSubjects, dataset, integer-method (setSubjects), 38
shadedPlot, 38
simulate, 39
simulate, campsis_model, data.frame, character, events, scenarios (simulate), 39
simulate, campsis_model, dataset, character, events, scenarios (simulate), 39
simulate, campsis_model, tbl_df, character, events, scenarios, f (simulate), 39
simulate, campsis_model, tbl_df, mrgsolve_engine, events, scenarios (simulate), 39
simulate, campsis_model, tbl_df, rxode_engine, events, scenarios (simulate), 39
simulation_engine-class, 43
simulation_progress-class, 44
SimulationProgress, 43
spaghettiPlot, 44
time_varying_covariate-class, 45
INDEX

TimeVaryingCovariate, 45

treatment-class, 45
treatment_iov-class, 46
treatment_iovs-class, 46

undefined_distribution-class, 46
UniformDistribution, 47

VPC, 47
vpcPlot, 48