Package ‘konfound’

October 13, 2022

Type Package

Title Quantify the Robustness of Causal Inferences

Version 0.4.0

Description Statistical methods that quantify the conditions necessary to alter inferences, also known as sensitivity analysis, are becoming increasingly important to a variety of quantitative sciences. A series of recent works, including Frank (2000) <doi:10.1177/0049124100029002001> and Frank et al. (2013) <doi:10.3102/0162373713493129> extend previous sensitivity analyses by considering the characteristics of omitted variables or unobserved cases that would change an inference if such variables or cases were observed. These analyses generate statements such as "an omitted variable would have to be correlated at xx with the predictor of interest (e.g., treatment) and outcome to invalidate an inference of a treatment effect". Or "one would have to replace pp percent of the observed data with null hypothesis cases to invalidate the inference". We implement these recent developments of sensitivity analysis and provide modules to calculate these two robustness indices and generate such statements in R. In particular, the functions konfound(), pkonfound() and mkonfound() allow users to calculate the robustness of inferences for a user's own model, a single published study and multiple studies respectively.

License MIT + file LICENSE

Imports broom, broom.mixed, crayon, dplyr, ggplot2, mice, purrr, rlang, tidyr, tibble

Suggests margins, pbkrtest, devtools, forcats, knitr, lme4, rmarkdown, roxygen2, testthat, ggrepel, covr

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

URL https://github.com/jrosen48/konfound

BugReports https://github.com/jrosen48/konfound/issues

Depends R (>= 2.10)
NeedsCompilation no

Author Joshua M Rosenberg [aut, cre],
Ran Xu [ctb],
Qinyun Lin [ctb],
Spiro Maroulis [ctb],
Kenneth A Frank [ctb]

Maintainer Joshua M Rosenberg <jmichaelrosenberg@gmail.com>

Repository CRAN

Date/Publication 2021-06-01 07:40:05 UTC

R topics documented:

- `binary_dummy_data` ... 2
- `concord1` .. 2
- `konfound` .. 3
- `launch_shiny` .. 4
- `mkonfound` ... 5
- `mkonfound_ex` .. 6
- `pkonfound` .. 6
- `summary.konfound` .. 9

Index

- `binary_dummy_data` Binary dummy data
- `concord1` Concord1 data

Description

This data is made-up data for use in examples.

Format

A data.frame with 107 rows and 2 variables.

Description

This data is from Hamilton (1983)

Format

A data.frame with 496 rows and 10 variables.
References

konfound

Perform sensitivity analysis on fitted models

Description
For fitted models, this command calculates (1) how much bias there must be in an estimate to invalidate/sustain an inference; (2) the impact of an omitted variable necessary to invalidate/sustain an inference for a regression coefficient. Currently works for: models created with lm() (linear models).

Usage
konfound(
 model_object,
 tested_variable,
 alpha = 0.05,
 tails = 2,
 index = "RIR",
 to_return = "print",
 test_all = FALSE,
 two_by_two = FALSE,
 n_treat = NULL,
 switch_trm = TRUE,
 replace = "control"
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>model_object</td>
<td>output from a model (currently works for: lm)</td>
</tr>
<tr>
<td>tested_variable</td>
<td>Variable associated with the unstandardized beta coefficient to be tested</td>
</tr>
<tr>
<td>alpha</td>
<td>probability of rejecting the null hypothesis (defaults to 0.05)</td>
</tr>
<tr>
<td>tails</td>
<td>integer whether hypothesis testing is one-tailed (1) or two-tailed (2; defaults to 2)</td>
</tr>
<tr>
<td>index</td>
<td>whether output is RIR or IT (impact threshold); defaults to "RIR"</td>
</tr>
<tr>
<td>to_return</td>
<td>whether to return a data.frame (by specifying this argument to equal "raw_output" for use in other analyses) or a plot ("plot"); default is to print ("print") the output to the console; can specify a vector of output to return</td>
</tr>
<tr>
<td>test_all</td>
<td>whether to carry out the sensitivity test for all of the coefficients (defaults to FALSE)</td>
</tr>
</tbody>
</table>
two_by_two whether or not the tested variable is a dichotomous variable in a GLM; if so, the 2X2 table approach is used; only works for single variables at present (so test_all = TRUE will return an error)

n_treat the number of cases associated with the treatment condition; applicable only when model_type = "logistic"

switch_trm whether to switch the treatment and control cases; defaults to FALSE; applicable only when model_type = "logistic"

replace whether using entire sample or the control group to calculate the base rate; default is the entire sample

Value

prints the bias and the number of cases that would have to be replaced with cases for which there is no effect to invalidate the inference

Examples

using lm() for linear models
m1 <- lm(mpg ~ wt + hp, data = mtcars)
konfound(m1, wt)
konfound(m1, wt, test_all = TRUE)
konfound(m1, wt, to_return = "table")

using glm() for non-linear models
if (requireNamespace("forcats")) {
 d <- forcats::gss_cat
 d$married <- ifelse(d$marital == "Married", 1, 0)

 m2 <- glm(married ~ age, data = d, family = binomial(link = "logit"))
 konfound(m2, age)
}

using lme4 for mixed effects (or multi-level) models
if (requireNamespace("lme4")) {
 library(lme4)
 m3 <- fm1 <- lme4::lmer(Reaction ~ Days + (1 | Subject), sleepstudy)
 konfound(m3, Days)
}

m4 <- glm(outcome ~ condition, data = binary_dummy_data, family = binomial(link = "logit"))
konfound(m4, condition, two_by_two = TRUE, n_treat = 55)

launch_shiny Open interactive web application for konfound
Description

Open interactive web application for konfound

Usage

`launch_shiny()`

Details

Open the Shiny interactive web application in a browser

Value

Launches a web browser

mkonfound

Perform meta-analyses including sensitivity analysis

Description

For fitted models, this command carries out sensitivity analysis for a number of models, when their parameters stored in a data.frame.

Usage

`mkonfound(d, t, df, alpha = 0.05, tails = 2, return_plot = FALSE)`

Arguments

- `d` data.frame or tibble with the t-statistics and associated degrees of freedom
- `t` t-statistic or vector of t-statistics
- `df` degrees of freedom or vector of degrees of freedom associated with the t-statistics in the `t` argument
- `alpha` probability of rejecting the null hypothesis (defaults to 0.05)
- `tails` integer whether hypothesis testing is one-tailed (1) or two-tailed (2; defaults to 2)
- `return_plot` whether to return a plot of the percent bias; defaults to FALSE

Value

prints the bias and the number of cases that would have to be replaced with cases for which there is no effect to invalidate the inference for each of the cases in the data.frame
Examples

```r
## Not run:
mkonfound_ex
str(d)
mkonfound(mkonfound_ex, t, df)
## End(Not run)
```

mkonfound_ex

Example data for the mkonfound function

Description

A dataset containing t and df values from example studies from Educational Evaluation and Policy Analysis (as detailed in Frank et al., 2013): https://drive.google.com/file/d/1aGhxGjvMvEPVAgOA8rrxvA97uUO5TTMe/view

Usage

```r
mkonfound_ex
```

Format

A data frame with 30 rows and 2 variables:

- **t** t value
- **df** degrees of freedom associated with the t value ...

Source

https://drive.google.com/file/d/1aGhxGjvMvEPVAgOA8rrxvA97uUO5TTMe/view

pkonfound

Perform sensitivity analysis for published studies

Description

For published studies, this command calculates (1) how much bias there must be in an estimate to invalidate/sustain an inference; (2) the impact of an omitted variable necessary to invalidate/sustain an inference for a regression coefficient.
Usage

```r
pkonfound(
  est_eff,  # the estimated effect (such as an unstandardized beta coefficient or a group mean difference)
  std_err,  # the standard error of the estimate of the unstandardized regression coefficient
  n_obs,    # the number of observations in the sample
  n_covariates = 1,  # the number of covariates in the regression model
  alpha = 0.05,      # probability of rejecting the null hypothesis (defaults to 0.05)
  tails = 2,         # integer whether hypothesis testing is one-tailed (1) or two-tailed (2; defaults to 2)
  index = "RIR",    # whether output is RIR or IT (impact threshold); defaults to "RIR"
  nu = 0,            # what hypothesis to be tested; defaults to testing whether est_eff is significantly different from 0
  n_treat = NULL,    # the number of cases associated with the treatment condition; applicable only when model_type = "logistic"
  switch_trm = TRUE, # whether to switch the treatment and control cases; defaults to FALSE; applicable only when model_type = "logistic"
  model_type = "ols", # the type of model being estimated; defaults to "ols" for a linear regression model; the other option is "logistic"
  a = NULL,          # cell is the number of cases in the control group showing unsuccessful results
  b = NULL,          # cell is the number of cases in the control group showing successful results
  to_return = "print"
)
```

Arguments

- `est_eff`
- `std_err`
- `n_obs`
- `n_covariates`
- `alpha`
- `tails`
- `index`
- `nu`
- `n_treat`
- `switch_trm`
- `model_type`
- `a`
- `b`
c cell is the number of cases in the treatment group showing unsuccessful results
d cell is the number of cases in the treatment group showing successful results
two_by_two_table table that is a matrix or can be coerced to one (data.frame, tibble, tribble) from which the a, b, c, and d arguments can be extracted
test whether using Fisher’s Exact Test or a chi-square test; defaults to Fisher’s Exact Test
replace whether using entire sample or the control group to calculate the base rate; default is the entire sample
to_return whether to return a data.frame (by specifying this argument to equal "raw_output" for use in other analyses) or a plot ("plot"); default is to print ("print") the output to the console; can specify a vector of output to return

Value

prints the bias and the number of cases that would have to be replaced with cases for which there is no effect to invalidate the inference

Examples

using pkonfound for linear models
pkonfound(2, .4, 100, 3)
pkonfound(-2.2, .65, 200, 3)
pkonfound(.5, 3, 200, 3)
pkonfound(-0.2, 0.103, 20888, 3, n_treat = 17888, model_type = "logistic")
pkonfound(2, .4, 100, 3, to_return = "thresh_plot")
pkonfound(2, .4, 100, 3, to_return = "corr_plot")

pkonfound_output <- pkonfound(2, .4, 200, 3, to_return = c("raw_output", "thresh_plot", "corr_plot")
)
summary(pkonfound_output)
pkonfound_output$raw_output
pkonfound_output$thresh_plot
pkonfound_output$corr_plot

using pkonfound for a 2x2 table
pkonfound(a = 35, b = 17, c = 17, d = 38)
pkonfound(a = 35, b = 17, c = 17, d = 38, alpha = 0.01)
pkonfound(a = 35, b = 17, c = 17, d = 38, alpha = 0.01, switch_trm = FALSE)
pkonfound(a = 35, b = 17, c = 17, d = 38, test = "chisq")
Description
Concise summary of konfound output

Usage
```r
## S3 method for class 'konfound'
summary(object, ...)
```

Arguments
- `object` A `konfound` object
- `...` Additional arguments

Details
Prints a concise summary of konfound output with multiple types of data specified in the `to_return` argument
Index

* datasets
 mkonfound_ex, 6
binary_dummy_data, 2
concord1, 2
konfound, 3
launch_shiny, 4
mkonfound, 5
mkonfound_ex, 6
pkonfound, 6
summary.konfound, 9