Package ‘mable’

October 13, 2022

Title Maximum Approximate Bernstein/Beta Likelihood Estimation
Version 3.1.1
Date 2022-06-21
Author Zhong Guan [aut, cre]
Maintainer Zhong Guan <zguan@iusb.edu>
Depends R (>= 3.5.0)
Description Fit data from a continuous population with a smooth density on finite interval by an approximate Bernstein polynomial model which is a mixture of certain beta distributions and find maximum approximate Bernstein likelihood estimator of the unknown coefficients. Consequently, maximum likelihood estimates of the unknown density, distribution functions, and more can be obtained. If the support of the density is not the unit interval then transformation can be applied. This is an implementation of the methods proposed by the author of this package published in the Journal of Nonparametric Statistics: Guan (2016) <doi:10.1080/10485252.2016.1163349> and Guan (2017) <doi:10.1080/10485252.2017.1374384>. For data with covariates, under some semiparametric regression models such as Cox proportional hazards model and the accelerated failure time model, the baseline survival function can be estimated smoothly based on general interval censored data.
License LGPL (>= 2.0, < 3)
LazyData true
Encoding UTF-8
Imports survival, graphics, stats, icenReg, parallel, doParallel, foreach, iterators, tcltk
Suggests mixtools, ICsurv, knitr, rmarkdown, pbapply, markdown, ks, multimode
BuildVignettes true
VignetteBuilder knitr, rmarkdown
RoxygenNote 7.2.0
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-06-23 23:50:02 UTC
Chicken Embryo Data

Description

The chicken embryo dataset which contains day, number of days, and nT, the corresponding frequencies.

Usage

`data(chicken.embryo)`

Format

The format is: List of 2: day: int [1:21] 1 2 3 4 5 6 7 8 9 10 ...; nT : int [1:21] 6 5 11 2 2 3 0 0 0 0 ...
cosmesis

Source

References

Examples
```r
data(chicken.embryo)
```

cosmesis

Breast cosmesis data

Description
Data contain the interval-censored times to cosmetic deterioration for breast cancer patients undergoing radiation or radiation plus chemotherapy.

Usage
```r
data(cosmesis)
```

Format
A data frame with 94 observations on the following 3 variables.
- `left` left endpoint of the censoring interval in months
- `right` right endpoint of the censoring interval in months
- `treat` a factor with levels `RT` and `RCT` representing radiotherapy-only and radiation plus chemotherapy treatments, respectively

Source

References

Examples
```r
data(cosmesis)
```
Description

Density, distribution function, quantile function and pseudorandom number generation for the Bernstein polynomial model, mixture of beta distributions, with shapes \((i + 1, m - i + 1) \), \(i = 0, \ldots, m \), given mixture proportions \(p = (p_0, \ldots, p_m) \) and support interval.

Usage

- `dmixbeta(x, p, interval = c(0, 1))`
- `pmixbeta(x, p, interval = c(0, 1))`
- `qmixbeta(u, p, interval = c(0, 1))`
- `rmixbeta(n, p, interval = c(0, 1))`

Arguments

- `x` a vector of quantiles
- `p` a vector of \(m+1 \) values. The \(m+1 \) components of \(p \) must be nonnegative and sum to one for mixture beta distribution. See 'Details'.
- `interval` support/truncation interval \([a, b]\).
- `u` a vector of probabilities
- `n` sample size

Details

The density of the mixture beta distribution on an interval \([a, b]\) can be written as a Bernstein polynomial \(f_m(x; p) = (b - a)^{-1} \sum_{i=0}^{m} p_i \beta_{m_i}[(x - a)/(b - a)]/(b - a) \), where \(p = (p_0, \ldots, p_m) \), \(p_i \geq 0 \), \(\sum_{i=0}^{m} p_i = 1 \) and \(\beta_{m_i}(u) = (m + 1)\binom{m}{i}u^i(1 - u)^{m_i - i} \), \(i = 0, 1, \ldots, m \), is the beta density with shapes \((i + 1, m - i + 1)\). The cumulative distribution function is \(F_m(x; p) = \sum_{i=0}^{m} p_i \beta_{m_i}[(x - a)/(b - a)] \), where \(\beta_{m_i}(u) \), \(i = 0, 1, \ldots, m \), is the beta cumulative distribution function with shapes \((i + 1, m - i + 1)\). If \(\pi = \sum_{i=0}^{m} p_i < 1 \), then \(f_m/\pi \) is a truncated density on \([0, b]\) with cumulative distribution function \(F_m/\pi \). The argument \(p \) may be any numeric vector of \(m+1 \) values when pmixbeta() and qmixbeta() return the integral function \(F_m(x; p) \) and its inverse, respectively, and dmixbeta() returns a Bernstein polynomial \(f_m(x; p) \). If components of \(p \) are not all nonnegative or do not sum to one, warning message will be returned.

Value

A vector of \(f_m(x; p) \) or \(F_m(x; p) \) values at \(x \). dmixbeta returns the density, pmixbeta returns the cumulative distribution function, qmixbeta returns the quantile function, and rmixbeta generates pseudo random numbers.
dmixmvbeta

Author(s)

Zhong Guan <zguan@iusb.edu>

References

See Also

mable

Examples

classical Bernstein polynomial approximation
a<-4; b<-4; m<-200
x<-seq(a,b,len=512)
u<-(0:m)/m
p<-dnorm(a+(b-a)*u)
plot(x, dnorm(x), type="l")
lines(x, (b-a)*dmixbeta(x, p, c(a, b))/(m+1), lty=2, col=2)
legend(a, dnorm(0), lty=1:2, col=1:2, c(expression(f(x)==phi(x)),
expression(B^{f}(x))))

dmixmvbeta

Multivariate Mixture Beta Distribution

Description

Density, distribution function, and pseudorandom number generation for the multivariate Bernstein polynomial model, mixture of multivariate beta distributions, with given mixture proportions \(p = (p_0, \ldots, p_{K-1}) \), given degrees \(m = (m_1, \ldots, m_d) \), and support interval.

Usage

\[
dmixmvbeta(x, p, m, interval = \text{NULL})
\]

\[
pmixmvbeta(x, p, m, interval = \text{NULL})
\]

\[
rmixmvbeta(n, p, m, interval = \text{NULL})
\]
Arguments

\(x\) a matrix with \(d\) columns or a vector of length \(d\) within support hyperrectangle \([a, b] = [a_1, b_1] \times \cdots \times [a_d, b_d]\)

\(p\) a vector of \(K\) values. All components of \(p\) must be nonnegative and sum to one for the mixture multivariate beta distribution. See ‘Details’.

\(m\) a vector of degrees, \((m_1, \ldots, m_d)\)

interval a vector of two endpoints or a \(d \times 2\) matrix, each row containing the endpoints of support/truncation interval for each marginal density. If missing, the \(i\)-th row is assigned as \(c(\min(x[,i]), \max(x[,i]))\).

\(n\) sample size

Details

\texttt{dmixmvbeta()} returns a linear combination \(f_m\) of \(d\)-variate beta densities on \([a, b], \beta_{mj}(x) = \prod_{i=1}^{d} \beta_{m_i,j_i}(x_i - a_i)/(b_i - a_i)/(b_i - a_i), \) with coefficients \(p(j_1, \ldots, j_d), 0 \leq j_i \leq m_i, i = 1, \ldots, d,\) where \([a, b] = [a_1, b_1] \times \cdots \times [a_d, b_d]\) is a hyperrectangle, and the coefficients are arranged in the column-major order of \(j = (j_1, \ldots, j_d), p_0, \ldots, p_{K-1},\) where \(K = \prod_{i=1}^{d} (m_i + 1).\)

\texttt{pmixmvbeta()} returns a linear combination \(F_m\) of the distribution functions of \(d\)-variate beta distribution.

If all \(p_i\)'s are nonnegative and sum to one, then \(p\) are the mixture proportions of the mixture multivariate beta distribution.

\begin{center}
<table>
<thead>
<tr>
<th>\textbf{dtmixbeta}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbf{Exponentially Tilted Mixture Beta Distribution}</td>
</tr>
</tbody>
</table>
\end{center}

Description

Density, distribution function, quantile function and pseudorandom number generation for the exponentially tilted mixture of beta distributions, with shapes \((i + 1, m - i + 1), i = 0, \ldots, m,\) given mixture proportions \(p = (p_0, \ldots, p_m)\) and support interval.

Usage

\begin{verbatim}
dtmixbeta(x, p, alpha, interval = c(0, 1), regr, ...)
ptmixbeta(x, p, alpha, interval = c(0, 1), regr, ...)
qtmixbeta(u, p, alpha, interval = c(0, 1), regr, ...)
rtmixbeta(n, p, alpha, interval = c(0, 1), regr, ...)
\end{verbatim}
dtmixbeta

Arguments

x a vector of quantiles
p a vector of m+1 components of p must be nonnegative and sum to one for mixture beta distribution. See ’Details’.
alpha regression coefficients
interval support/truncation interval [a, b].
regr regressor vector function r(x) = (1, r_1(x), ..., r_d(x)) which returns n x (d+1) matrix, n=length(x)
... additional arguments to be passed to regr
u a vector of probabilities
n sample size

Details

The density of the mixture exponentially tilted beta distribution on an interval [a, b] can be written

\[f_m(x; p) = (b-a)^{-1} \exp(a' r(x)) \sum_{i=0}^{m} p_i \beta_{m_i}((x-a)/(b-a))/(b-a), \]

where \(p = (p_0, \ldots, p_m) \), \(p_i \geq 0 \), \(\sum_{i=0}^{m} p_i = 1 \) and \(\beta_{m_i}(u) = (m+1)\binom{m}{i} u^i(1-x)^{m-i} \), \(i = 0, 1, \ldots, m \), is the beta density with shapes \((i+1, m-i+1) \). The cumulative distribution function is

\[F_m(x; p) = \sum_{i=0}^{m} p_i \beta_{m_i}((x-a)/(b-a); \alpha), \]

where \(\beta_{m_i}(u; \alpha) \), \(i = 0, 1, \ldots, m \), is the exponentially tilted beta cumulative distribution function with shapes \((i+1, m-i+1) \).

Value

A vector of \(f_m(x; p) \) or \(F_m(x; p) \) values at \(x \). dmixbeta returns the density, pmixbeta returns the cumulative distribution function, qmixbeta returns the quantile function, and rmixbeta generates pseudo random numbers.

Author(s)

Zhong Guan <zguan@iusb.edu>

References

Guan, Z., Application of Bernstein Polynomial Model to Density and ROC Estimation in a Semi-parametric Density Ratio Model

See Also

mable

Examples

classical Bernstein polynomial approximation
a<-4; b<-4; m<-200
x<-seq(a,b,len=512)
u<-seq(0:m)/m
p<-dnorm(a+(b-a)*u)
plot(x, dnorm(x), type="l")
mable Mable fit of one-sample raw data with an optimal or given degree.

Description

Maximum approximate Bernstein/Beta likelihood estimation based on one-sample raw data with an optimal selected by the change-point method among $m_0:m_1$ or a preselected model degree m.

Usage

```r
mable(
  x,
  M,
  interval = c(0, 1),
  IC = c("none", "aic", "hqic", "all"),
  vb = 0,
  controls = mable.ctrl(),
  progress = TRUE
)
```

Arguments

- **x**: a (non-empty) numeric vector of data values.
- **M**: a positive integer or a vector (m_0, m_1). If $M = m$ or $m_0 = m_1 = m$, then m is a preselected degree. If $m_0 < m_1$ it specifies the set of consecutive candidate model degrees $m_0:m_1$ for searching an optimal degree, where $m_1-m_0 > 3$.
- **interval**: a vector containing the endpoints of supporting/truncation interval $c(a,b)$
- **IC**: information criterion(s) in addition to Bayesian information criterion (BIC). Current choices are "aic" (Akaike information criterion) and/or "hqic" (Hannan–Quinn information criterion).
- **vb**: code for vanishing boundary constraints, -1: $f_0(a)=0$ only, 1: $f_0(b)=0$ only, 2: both, 0: none (default).
- **controls**: Object of class mable.ctrl() specifying iteration limit and the convergence criterion eps. Default is mable.ctrl. See Details.
- **progress**: if TRUE a text progressbar is displayed
Details

Any continuous density function f on a known closed supporting interval $[a, b]$ can be estimated by Bernstein polynomial $f_m(x; p) = \sum_{i=0}^{m} p_i \beta_{mi} \left(\frac{x-a}{b-a} \right)$, where $p = (p_0, \ldots, p_m)$, $p_i \geq 0$, $\sum_{i=0}^{m} p_i = 1$ and $\beta_{mi}(u) = \binom{m+1}{i} u^i (1-u)^{m-i}$, $i = 0, 1, \ldots, m$, is the beta density with shapes $(i+1, m-i+1)$. For each m, the MABLE of the coefficients p, the mixture proportions, are obtained using EM algorithm. The EM iteration for each candidate m stops if either the total absolute change of the log likelihood and the coefficients of Bernstein polynomial is smaller than ε or the maximum number of iterations maxit is reached.

If $m_0 < m_1$, an optimal model degree is selected as the change-point of the increments of log-likelihood, log likelihood ratios, for $m \in \{m_0, m_0 + 1, \ldots, m_1\}$. Alternatively, one can choose an optimal degree based on the BIC (Schwarz, 1978) which are evaluated at $m \in \{m_0, m_0 + 1, \ldots, m_1\}$. The search for optimal degree m is stopped if either m_1 is reached with a warning or the test for change-point results in a p-value pval smaller than sig.level. The BIC for a given degree m is calculated as in Schwarz (1978) where the dimension of the model is $d = \#\{i : \hat{p}_i \geq \varepsilon, i = 0, \ldots, m\} - 1$ and a default ε is chosen as MachineEps.

If data show a clearly multimodal distribution by plotting the histogram for example, the model degree is usually large. The range M should be large enough to cover the optimal degree and the computation is time-consuming. In this case the iterative method of moment with an initial selected by a method of mode which is implemented by optimable can be used to reduce the computation time.

Value

A list with components

- m the given or a selected degree by method of change-point
- p the estimated vector of mixture proportions $p = (p_0, \ldots, p_m)$ with the selected/given optimal degree m
- $mloglik$ the maximum log-likelihood at degree m
- $interval$ support/truncation interval (a,b)
- $convergence$ An integer code. 0 indicates successful completion (all the EM iterations are convergent and an optimal degree is successfully selected in M). Possible error codes are
 - 1, indicates that the iteration limit maxit had been reached in at least one EM iteration;
 - 2, the search did not finish before m_1.
- δ the convergence criterion δ value

and, if $m_0 < m_1$,

- M the vector (m_0, m_1), where m_1, if greater than m_0, is the largest candidate when the search stopped
- lkl log-likelihoods evaluated at $m \in \{m_0, \ldots, m_1\}$
- lr likelihood ratios for change-points evaluated at $m \in \{m_0 + 1, \ldots, m_1\}$
- ic a list containing the selected information criterion(s)
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees
Note
Since the Bernstein polynomial model of degree m is nested in the model of degree $m + 1$, the maximum likelihood is increasing in m. The change-point method is used to choose an optimal degree m. The degree can also be chosen by a method of moment and a method of mode which are implemented by function `optimal()`.

Author(s)
Zhong Guan <zguan@iusb.edu>

References

See Also
`optimable`

Examples

```r
# Vaal Rive Flow Data
data(Vaal.Flow)
x<-Vaal.Flow$Flow
res<-mable(x, M = c(2,100), interval = c(0, 3000), controls =
        mable.ctrl(sig.level = 1e-8, maxit = 2000, eps = 1.0e-9))
op<-par(mfrow = c(1,2),lwd = 2)
layout(matrix(1:4, nrow = 2, byrow = TRUE))
plot(res, which = "likelihood", cex = .5)
plot(res, which = c("change-point"), lgd.x = "topright")
hist(x, prob = TRUE, xlim = c(0,3000), ylim = c(0, .0022), breaks = 100*(0:30),
     main = "Histogram and Densities of the Annual Flow of Vaal River",
     border = "dark grey", lwd = 1, xlab = "x", ylab = "f(x)", col = "light grey")
lines(density(x, bw = "nrd0", adjust = 1), lty = 4, col = 4)
lines(y<-seq(0, 3000, length = 100), dlnorm(y, mean(log(x)),
     sqrt(var(log(x)))), lty = 2, col = 2)
plot(res, which = "density", add = TRUE)
legend("top", lty = c(1, 2, 4), col = c(1, 2, 4), bty = "n",
     c(expression(paste("MABLE: ",hat(f)[B]),
        expression(paste("Log-Normal: ",hat(f)[P]),
        expression(paste("KDE: ",hat(f)[K])))
     par(op)

# Old Faithful Data
library(mixtools)
x<-faithful$eruptions
a<-0; b<-7
v<-seq(a, b, len = 512)
mux<-c(2,4.5); sig<-c(1,1)
mable.aft

Mable fit of Accelerated Failure Time Model

Description

Maximum approximate Bernstein/Beta likelihood estimation for accelerated failure time model based on interval censored data.

Usage

mable.aft(formula, data, M, g = NULL, tau = NULL, x0 = NULL, controls = mable.ctrl(), progress = TRUE)

Arguments

formula regression formula. Response must be cbind. See 'Details'.
data a dataset
M  a positive integer or a vector \((m_0, m_1)\). If \(M = m\) or \(m_0 = m_1 = m\), then \(m\) is a pre-selected degree. If \(m_0 < m_1\) it specifies the set of consecutive candidate model degrees \(m_0: m_1\) for searching an optimal degree, where \(m_1-m_0\geq 3\).

\[ g \] the given \(d\)-vector of regression coefficients, default is zero vector.

\[ \tau \] the right endpoint of the support or truncation interval \([0, \tau)\) of the baseline density. Default is \(null\) (unknown), otherwise if \(\tau\) is given then it is taken as a known value of \(\tau\). See 'Details'.

\[ x_0 \] a working baseline covariate \(x_0\), default is zero vector. See 'Details'.

controls  Object of class \(\text{mable.ctrl()}\) specifying iteration limit and other control options. Default is \(\text{mable.ctrl}()\).

progress  if TRUE a text progressbar is displayed

Details

Consider the accelerated failure time model with covariate for interval-censored failure time data:

\[ S(t|x) = S(t \exp(\gamma'(x - x_0)) | x_0) \]

where \(x_0\) is a baseline covariate. Let \(f(t|x)\) and \(F(t|x) = 1 - S(t|x)\) be the density and cumulative distribution functions of the event time given \(X = x\), respectively. Then \(f(t|x_0)\) on a truncation interval \([0, \tau]\) can be approximated by \(f_m(t|x_0; p) = \tau^{-1} \sum_{i=0}^{m} p_i \bar{B}_{mi}(t/\tau)\), where \(p_i \geq 0, i = 0, \ldots, m, \sum_{i=0}^{m} p_i = 1\), \(\bar{B}_{mi}(u)\) is the beta density with shapes \(i + 1\) and \(m - i + 1\), and \(\tau\) is larger than the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. So we can approximate \(S(t|x_0)\) on \([0, \tau]\) by \(S_m(t|x_0; p) = \sum_{i=0}^{m} p_i \bar{B}_{mi}(t/\tau)\), where \(\bar{B}_{mi}(u)\) is the beta survival function with shapes \(i + 1\) and \(m - i + 1\).

Response variable should be of the form \(\text{cbind}(l, u)\), where \(l, u\) is the interval containing the event time. Data is uncensored if \(l = u\), right censored if \(u = \text{Inf}\) or \(u = \text{NA}\), and left censored data if \(l = 0\). The truncation time \(\tau\) and the baseline \(x_0\) should be chosen so that \(S(t|x) = S(t \exp(\gamma'(x - x_0)) | x_0)\) on \([\tau, \infty)\) is negligible for all the observed \(x\).

The search for optimal degree \(m\) stops if either \(m_1\) is reached or the test for change-point results in a p-value \(pval\) smaller than \(\text{sig.level}\).

Value

A list with components

- \(m\) the given or selected optimal degree \(m\)
- \(p\) the estimate of \(p = (p_0, \ldots, p_m)\), the coefficients of Bernstein polynomial of degree \(m\)
- \(\text{coefficients}\) the estimated regression coefficients of the AFT model
- \(\text{SE}\) the standard errors of the estimated regression coefficients
- \(\text{z}\) the z-scores of the estimated regression coefficients
- \(\text{mloglik}\) the maximum log-likelihood at an optimal degree \(m\)
- \(\tau_n\) maximum observed time \(\tau_n\)
- \(\tau\) right endpoint of trucation interval \([0, \tau)\)
- \(x_0\) the working baseline covariates
- \(\text{egx0}\) the value of \(e^{\gamma'x_0}\)
convergence an integer code, 1 indicates either the EM-like iteration for finding maximum likelihood reached the maximum iteration for at least one \( m \) or the search of an optimal degree using change-point method reached the maximum candidate degree, 2 indicates both occurred, and 0 indicates a successful completion.

- \( \delta \) the final \( \delta \) if \( m_0 = m_1 \) or the final \( p\text{val} \) of the change-point for searching the optimal degree \( m \);

and, if \( m_0 < m_1 \),

- \( M \) the vector \( (m_0, m_1) \), where \( m_1 \) is the last candidate when the search stopped
- \( 1k \) log-likelihoods evaluated at \( m \in \{m_0, \ldots, m_1\} \)
- \( 1r \) likelihood ratios for change-points evaluated at \( m \in \{m_0 + 1, \ldots, m_1\} \)
- \( p\text{val} \) the \( p\)-values of the change-point tests for choosing optimal model degree
- \( \text{chpts} \) the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan <zguan@iusb.edu>

References


See Also

maple.aft

Examples

```r
Breast Cosmesis Data
bcos<cosmesis
bcos2<-data.frame(bcos[,1:2], x=1*(bcos$treat=="RCT"))
g <- 0.41 # Hanson and Johnson 2004, JCGS
aft.res<-mable.aft(cbind(left, right)~x, data=bcos2, M=c(1, 30), g=g, tau=100, x0=1)
op<-par(mfrow=c(1,2), lwd=1.5)
plot(x=aft.res, which="likelihood")
plot(x=aft.res, y=data.frame(x=0), which="survival", model='aft', type="1", col=1,
 add=FALSE, main="Survival Function")
plot(x=aft.res, y=data.frame(x=1), which="survival", model='aft', lty=2, col=1)
legend("bottomleft", bty="n", lty=1:2, col=1, c("Radiation Only", "Radiation and Chemotherapy"))
par(op)
```
mable.ctrl  

Control parameters for mable fit

Description

Control parameters for mable fit

Usage

mable.ctrl(  
  sig.level = 0.01,  
  eps = 1e-07,  
  maxit = 5000L,  
  eps.em = 1e-07,  
  maxit.em = 5000L,  
  eps.nt = 1e-07,  
  maxit.nt = 1000L,  
  tini = 1e-04  
)

Arguments

  sig.level  
  eps  
  maxit  
  eps.em  
  maxit.em  
  eps.nt  
  maxit.nt  
  tini  

the significance level for change-point method of choosing optimal model degree  
convergence criterion for iteration involves EM like and Newton-Raphson iterations  
maximum number of iterations involve EM like and Newton-Raphson iterations  
convergence criterion for EM like iteration  
maximum number of EM like iterations  
convergence criterion for Newton-Raphson iteration  
maximum number of Newton-Raphson iterations  
a small positive number used to make sure initial p is in the interior of the simplex

Value

  a list of the arguments’ values

Author(s)

  Zhong Guan <zguan@iusb.edu>
Description

Maximum approximate Bernstein/Beta likelihood estimation in additive density deconvolution model with a known error density.

Usage

```r
mable.decon(
 y,
 gn = NULL,
 ...,
 M,
 interval = c(0, 1),
 IC = c("none", "aic", "hqic", "all"),
 vanished = TRUE,
 controls = mable.ctrl(maxit.em = 1e+05, eps.em = 1e-05, maxit.nt = 100, eps.nt = 1e-10),
 progress = TRUE
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>y</code></td>
<td>vector of observed data values</td>
</tr>
<tr>
<td><code>gn</code></td>
<td>error density function if known, default is NULL if unknown</td>
</tr>
<tr>
<td><code>...</code></td>
<td>additional arguments to be passed to <code>gn</code></td>
</tr>
<tr>
<td><code>M</code></td>
<td>a vector ( (m_0, m_1) ) specifies the set of consecutive candidate model degrees, ( M = m_0:m_1 ). If <code>gn</code> is unknown then <code>M</code> a 2 x 2 matrix whose rows ( (m_0, m_1) ) and ( (k_0, k_1) ) specify lower and upper bounds for degrees ( m ) and ( k ), respectively.</td>
</tr>
<tr>
<td><code>interval</code></td>
<td>a finite vector ( (a, b) ), the endpoints of supporting/truncation interval if <code>gn</code> is known. Otherwise, it is a 2 x 2 matrix whose rows ( (a, b) ) and ( (a_1, b_1) ) specify supporting/truncation intervals of ( X ) and ( \epsilon ), respectively. See Details.</td>
</tr>
<tr>
<td><code>IC</code></td>
<td>information criterion(s) in addition to Bayesian information criterion (BIC). Current choices are &quot;aic&quot; (Akaike information criterion) and/or &quot;hqic&quot; (Hannan–Quinn information criterion).</td>
</tr>
<tr>
<td><code>vanished</code></td>
<td>logical whether the unknown error density vanishes at both end-points of ( [a_1, b_1] )</td>
</tr>
<tr>
<td><code>controls</code></td>
<td>Object of class <code>mable.ctrl()</code> specifying iteration limit and other control options. Default is <code>mable.ctrl</code>.</td>
</tr>
<tr>
<td><code>progress</code></td>
<td>if TRUE a text progressbar is displayed</td>
</tr>
</tbody>
</table>
Details

Consider the additive measurement error model $Y = X + \epsilon$, where $X$ has an unknown distribution $F$ on a known support $[a, b]$, $\epsilon$ has a known or unknown distribution $G$, and $X$ and $\epsilon$ are independent. We want to estimate density $f = F'$ based on independent observations, $y_i = x_i + \epsilon_i$, $i = 1, \ldots, n$, of $Y$. We approximate $f$ by a Bernstein polynomial model on $[a, b]$. If $g = G'$ is unknown on a known support $[a_1, b_1]$, then we approximate $g$ by a Bernstein polynomial model on $[a_1, b_1]$, $a_1 < 0 < b_1$. We assume $E(\epsilon) = 0$. AIC and BIC methods are used to select model degrees $(m, k)$.

Value

A mable class object with components, if $g$ is known,

- $M$ the vector $(m0, m1)$, where $m1$ is the last candidate degree when the search stopped
- $m$ the selected optimal degree $m$
- $p$ the estimate of $p = (p_0, \ldots, p_m)$, the coefficients of Bernstein polynomial of degree $m$
- $lk$ log-likelihoods evaluated at $m \in \{m_0, \ldots, m_1\}$
- $lr$ likelihood ratios for change-points evaluated at $m \in \{m_0 + 1, \ldots, m_1\}$
- $convergence$ An integer code. 0 indicates an optimal degree is successfully selected in $M$. 1 indicates that the search stopped at $m1$.
- $ic$ a list containing the selected information criterion(s)
- $pval$ the $p$-values of the change-point tests for choosing optimal model degree
- $chpts$ the change-points chosen with the given candidate model degrees

If $g$ is unknown,

- $M$ the 2 x 2 matrix with rows $(m0, m1)$ and $(k0, k1)$
- $nu_aic$ the selected optimal degrees $(m, k)$ using AIC method
- $p_aic$ the estimate of $p = (p_0, \ldots, p_m)$, the coefficients of Bernstein polynomial model for $f$ of degree $m$ as in $nu_aic$
- $q_aic$ the estimate of $q = (q_0, \ldots, q_k)$, the coefficients of Bernstein polynomial model for $g$ of degree $k$ as in $nu_aic$
- $nu_bic$ the selected optimal degrees $(m, k)$ using BIC method
- $p_bic$ the estimate of $p = (p_0, \ldots, p_m)$, the coefficients of Bernstein polynomial model for $f$ of degree $m$ as in $nu_bic$
- $q_bic$ the estimate of $q = (q_0, \ldots, q_k)$, the coefficients of Bernstein polynomial model for $g$ of degree $k$ as in $nu_bic$
- $lk$ matrix of log-likelihoods evaluated at $m \in \{m_0, \ldots, m_1\}$ and $k \in \{k_0, \ldots, k_1\}$
- $aic$ a matrix containing the Akaike information criterion(s) at $m \in \{m_0, \ldots, m_1\}$ and $k \in \{k_0, \ldots, k_1\}$
- $bic$ a matrix containing the Bayesian information criterion(s) at $m \in \{m_0, \ldots, m_1\}$ and $k \in \{k_0, \ldots, k_1\}$

Author(s)

Zhong Guan <zguan@iusb.edu>
# A simulated normal dataset

set.seed(123)
mu<-1; sig<-2; a<-mu-sig*5; b<-mu+sig*5;
gn<-function(x) dnorm(x, 0, 1)
n<-50;
x<-rnorm(n, mu, sig); e<-rnorm(n); y<-x+e;
res<-mable.decon(y, gn, interval = c(a, b), M = c(5, 50))

op<-par(mfrow = c(2, 2), lwd = 2)
plot(res, which="likelihood")
plot(res, which="change-point", lgd.x="topright")
plot(xx<-seq(a, b, length=100), yy<-dnorm(xx, mu, sig), type="l", xlab="x",
     ylab="Density", ylim=c(0, max(yy)*1.1))
plot(res, which="density", types=c(2,3), colors=c(2,3))

# kernel density based on pure data
lines(density(x), lty=4, col=4)
legend("topright", bty="n", lty=1:4, col=1:4,
c(expression(f), expression(hat(f)[cp]), expression(hat(f)[bic]), expression(tilde(f)[K])))

plot(xx, yy<-pnorm(xx, mu, sig), type="l", xlab="x", ylab="Distribution Function")
plot(res, which="cumulative", types=c(2,3), colors=c(2,3))
legend("bottomright", bty="n", lty=1:3, col=1:3,
c(expression(F), expression(hat(F)[cp]), expression(hat(F)[bic])))

par(op)

---

**mable.dr**

### MABLE in Density Ratio Model

#### Description

Maximum approximate Bernstein/Beta likelihood estimation in a density ratio model based on two-sample raw data.

#### Usage

```r
mable.dr(
 x,
 y,
 M,
 regr,
 ...
)
```

interval = c(0, 1),

alpha = NULL,
v_b = 0,
baseline = NULL,
controls = mable.ctrl(),
progress = TRUE,
message = FALSE)

Arguments

x, y
original two sample raw data, codex:"Control", y: "Case".

M
a positive integer or a vector (m0, m1).

regr
regressor vector function \( r(x) = (1, r_1(x), ..., r_d(x)) \) which returns n x (d+1) matrix, n=length(x)

... additional arguments to be passed to regr

interval
a vector (a,b) containing the endpoints of supporting/truncation interval of x and y.

alpha
initial regression coefficient, missing value is imputed by logistic regression

vb
code for vanishing boundary constraints, -1: \( f_0(a)=0 \) only, 1: \( f_0(b)=0 \) only, 2: both, 0: none (default).

baseline
the working baseline, "Control" or "Case", if NULL it is chosen to the one with smaller estimated lower bound for model degree.

controls
Object of class mable.ctrl() specifying iteration limit and the convergence criterion for EM and Newton iterations. Default is mable.ctrl. See Details.

progress
logical: should a text progressbar be displayed

message
logical: should warning messages be displayed

Details

Suppose that x ("control") and y ("case") are independent samples from \( f_0 \) and \( f_1 \) which samples satisfy \( f_1(x) = f_0(x) \exp[\alpha_0 + \alpha'_0 r(x)] \) with \( r(x) = (r_1(x), ..., r_d(x)) \). Maximum approximate Bernstein/Beta likelihood estimates of (\( \alpha_0, \alpha'_0 \), \( f_0 \), \( f_1 \)) are calculated. If support is (a,b) then replace \( r(x) \) by \( r[a+(b-a)x] \). For a fixed \( m \), using the Bernstein polynomial model for baseline \( f_0 \), MABLEs of \( f_0 \) and parameters \( \alpha \) can be estimated by EM algorithm and Newton iteration. If estimated lower bound \( m_b \) for \( m \) based on \( y \) is smaller that that based on \( x \), then switch \( x \) and \( y \) and \( f_1 \) is used as baseline. If \( M=m \) or \( m0=m1=m \), then \( m \) is a preselected degree. If \( m0<m1 \) it specifies the set of consective candidate model degrees \( m0:m1 \) for searching an optimal degree by the change-point method, where \( m1-m0+3 \).

Value

A list with components

- \( m \) the given or a selected degree by method of change-point
- \( p \) the estimated vector of mixture proportions \( p = (p_0, ..., p_m) \) with the given or selected degree \( m \)
- \( \alpha \) the estimated regression coefficients
mable.dr.group

- mloglik: the maximum log-likelihood at degree m
- interval: support/truncation interval (a, b)
- baseline: "control" if f_0 is used as baseline, or "case" if f_1 is used as baseline.
- M: the vector (m0, m1), where m1, if greater than m0, is the largest candidate when the search stopped
- lk: log-likelihoods evaluated at m ∈ {m_0, ..., m_1}
- lr: likelihood ratios for change-points evaluated at m ∈ {m_0 + 1, ..., m_1}
- pval: the p-values of the change-point tests for choosing optimal model degree
- chpts: the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan <zguan@iusb.edu>

References

Guan, Z., Maximum Approximate Bernstein Likelihood Estimation of Densities in a Two-sample Semiparametric Model

Examples

# Hosmer and Lemeshow (1989):
# ages and the status of coronary disease (CHD) of 100 subjects
x<-c(20, 23, 24, 25, 26, 26, 28, 28, 29, 30, 30, 30, 30, 30, 32,
32, 33, 33, 34, 34, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39,
40, 41, 41, 42, 42, 42, 43, 43, 44, 44, 45, 46, 47, 47, 48, 49,
49, 50, 51, 52, 55, 57, 57, 58, 60, 64)
y<-c(25, 30, 34, 36, 37, 39, 40, 42, 43, 44, 44, 45, 46, 47, 48,
48, 49, 50, 52, 53, 53, 54, 55, 55, 56, 56, 56, 57, 57, 57, 57,
58, 58, 59, 59, 60, 61, 62, 63, 64, 65, 69)
regr<-function(x) cbind(1,x)
chd.mable<-mable.dr(x, y, M=c(1, 15), regr, interval = c(20, 70))
chd.mable

mable.dr.group  Mable fit of the density ratio model based on grouped data

Description

Maximum approximate Bernstein/Beta likelihood estimation in a density ratio model based on two-sample grouped data.
mable.dr.group

Usage

mable.dr.group(
  t,
  n0,
  n1,
  M,
  regr,
  ...,
  interval = c(0, 1),
  alpha = NULL,
  vb = 0,
  controls = mable.ctrl(),
  progress = TRUE,
  message = TRUE
)

Arguments

t  cutpoints of class intervals

n0, n1  frequencies of two sample data grouped by the classes specified by t. coding:
         n0: "Control", n1: "Case".

M  a positive integer or a vector (m0, m1).

regr  regressor vector function \[ r(x) = \left(1, r_1(x), \ldots, r_d(x)\right) \] which returns \( n \times (d+1) \) matrix, \( n=\text{length}(x) \)

...  additional arguments to be passed to regr

interval  a vector \( (a, b) \) containing the endpoints of supporting/truncation interval of \( x \) and \( y \).

alpha  a given regression coefficient, missing value is imputed by logistic regression

vb  code for vanishing boundary constraints, -1: \( f_0(a)=0 \) only, 1: \( f_0(b)=0 \) only, 2: both, 0: none (default).

controls  Object of class mable.ctrl() specifying iteration limit and the convergence criterion for EM and Newton iterations. Default is mable.ctrl. See Details.

progress  logical: should a text progressbar be displayed

message  logical: should warning messages be displayed

Details

Suppose that \( n0 \) ("control") and \( n1 \) ("case") are frequencies of independent samples grouped by the classes \( t \) from \( f0 \) and \( f1 \) which satisfy \( f1(x) = f0(x) \exp[\alpha_0 + \alpha_0' r(x)] \) with \( r(x) = (r_1(x), \ldots, r_d(x)) \). Maximum approximate Bernstein/Beta likelihood estimates of \( (\alpha_0, \alpha_0') \) and \( f_0 \) and \( f_1 \) are calculated. If support is \( (a, b) \) then replace \( r(x) \) by \( r[a+(b-a)x] \). For a fixed \( m \), using the Bernstein polynomial model for baseline \( f_0 \), MABLEs of \( f_0 \) and parameters alpha can be estimated by EM algorithm and Newton iteration. If estimated lower bound \( m_b \) for \( m \) based on \( n1 \) is smaller that that based on \( n0 \), then switch \( n0 \) and \( n1 \) and use \( f_1 \) as baseline. If \( m=n \) or \( m0=m1=m \), then \( m \) is a preselected degree. If \( m0<m1 \) it specifies the set of consective candidate model degrees \( m0:m1 \) for searching an optimal degree by the change-point method, where \( m1-m0>3 \).
mable.group

Mable fit of one-sample grouped data by an optimal or a preselected model degree

Description

Maximum approximate Bernstein/Beta likelihood estimation based on one-sample grouped data with an optimal selected by the change-point method among \(m_0:m_1\) or a preselected model degree \(m\).

Usage

```R
mable.group(
 x,
 breaks,
 M,
 interval = c(0, 1),
 IC = c("none", "aic", "hqic", "all"),
 vb = 0,
 controls = mable.ctrl(),
 progress = TRUE
)
```

Arguments

- `x` vector of frequencies
- `breaks` class interval end points
- `M` a positive integer or a vector \((m_0, m_1)\). If \(M = m\) or \(m_0 = m_1 = m\), then \(m\) is a preselected degree. If \(m_0 < m_1\) it specifies the set of consecutive candidate model degrees \(m_0:m_1\) for searching an optimal degree, where \(m_1-m_0>3\).
- `interval` a vector containing the endpoints of support/truncation interval
- `IC` information criterion(s) in addition to Bayesian information criterion (BIC). Current choices are "aic" (Akaike information criterion) and/or "hqic" (Hannan–Quinn information criterion).
- `vb` code for vanishing boundary constraints, -1: \(f_0(a)=0\) only, 1: \(f_0(b)=0\) only, 2: both, 0: none (default).
- `controls` Object of class `mable.ctrl()` specifying iteration limit and the convergence criterion \(\text{eps}\). Default is `mable.ctrl`. See Details.
- `progress` if TRUE a text progressbar is displayed

Details

Any continuous density function \(f\) on a known closed supporting interval \([a, b]\) can be estimated by Bernstein polynomial

\[
f_m(x; p) = \sum_{i=0}^{m} p_i \beta_{m_i}[(x-a)/(b-a)]/(b-a), \quad \text{where } p = (p_0, \ldots, p_m),
\]

\(p_i \geq 0, \sum_{i=0}^{m} p_i = 1\) and \(\beta_{m_i}(u) = (m+1)\binom{m}{i}u^i(1-x)^{m-i}, i = 0, 1, \ldots, m,\) is the beta density
with shapes \((i+1, m-i+1)\). For each \(m\), the MABLE of the coefficients \(p\), the mixture proportions, are obtained using EM algorithm. The EM iteration for each candidate \(m\) stops if either the total absolute change of the log likelihood and the coefficients of Bernstein polynomial is smaller than \(\text{eps}\) or the maximum number of iterations \(\text{maxit}\) is reached.

If \(m_0 < m_1\), an optimal model degree is selected as the change-point of the increments of log-likelihood, log likelihood ratios, for \(m \in \{m_0, m_0 + 1, \ldots, m_1\}\). Alternatively, one can choose an optimal degree based on the BIC (Schwarz, 1978) which are evaluated at \(m \in \{m_0, m_0 + 1, \ldots, m_1\}\). The search for optimal degree \(m\) is stopped if either \(m_1\) is reached with a warning or the test for change-point results in a p-value \(pval\) smaller than \(\text{sig.level}\). The BIC for a given degree \(m\) is calculated as in Schwarz (1978) where the dimension of the model is \(d = \#\{i : \hat{p}_i \geq \epsilon, i = 0, \ldots, m\} - 1\) and a default \(\epsilon\) is chosen as \(.\text{Machine}$.double\_eps\).

**Value**

A list with components

- \(m\) the given or a selected degree by method of change-point
- \(p\) the estimated \(p\) with degree \(m\)
- \(m\loglik\) the maximum log-likelihood at degree \(m\)
- \(\text{interval}\) supporting interval \((a, b)\)
- \(\text{convergence}\) An integer code. 0 indicates successful completion (all the EM iterations are convergent and an optimal degree is successfully selected in \(m\)). Possible error codes are
  - \(-1\), indicates that the iteration limit \(\text{maxit}\) had been reached in at least one EM iteration;
  - \(-2\), the search did not finish before \(m_1\).
- \(\text{delta}\) the convergence criterion \(\text{delta}\) value

and, if \(m_0 < m_1\),

- \(\text{M}\) the vector \((m_0, m_1)\), where \(m_1\), if greater than \(m_0\), is the largest candidate when the search stoped
- \(\text{lk}\) log-likelihoods evaluated at \(m \in \{m_0, \ldots, m_1\}\)
- \(\text{lr}\) likelihood ratios for change-points evaluated at \(m \in \{m_0 + 1, \ldots, m_1\}\)
- \(\text{ic}\) a list containing the selected information criterion(s)
- \(pval\) the p-values of the change-point tests for choosing optimal model degree
- \(\text{chpts}\) the change-points chosen with the given candidate model degrees

**Author(s)**

Zhong Guan <zguan@iusb.edu>

**References**

mable.ic

See Also

mable.ic

Examples

```r
Chicken Embryo Data
data(chicken.embryo)
a<-0; b<-21
day<-chicken.embryo$day
nT<-chicken.embryo$nT
Day<-rep(day,nT)
res<-mable.group(x=nT, breaks=a:b, M=c(2,100), interval=c(a, b), IC="aic",
 controls=mable.ctrl(sig.level=1e-6, maxit=2000, eps=1.0e-7))
op<-par(mfrow=c(1,2), lwd=2)
layout(rbind(c(1, 2), c(3, 3)))
plot(res, which="likelihood")
plot(res, which="change-point")
fk<-density(x=rep((0:20)+.5, nT), bw="sj", n=101, from=a, to=b)
hist(Day, breaks=seq(a,b, length=12), freq=FALSE, col="grey",
 border="white", main="Histogram and Density Estimates")
plot(res, which="density", types=1:2, colors=1:2)
lines(fk, lty=2, col=2)
legend("topright", lty=c(1:2), c("MABLE", "Kernel"), bty="n", col=c(1:2))
par(op)
```

mable.ic

Mable fit based on one-sample interval censored data

Description

Maximum approximate Bernstein/Beta likelihood estimation of density and cumulative/survival
distributions functions based on internal censored event time data.

Usage

```r
mable.ic(
 data,
 M,
 pi0 = NULL,
 tau = Inf,
 IC = c("none", "aic", "hqic", "all"),
 controls = mable.ctrl(),
 progress = TRUE
)
```
Arguments

data  a dataset either data.frame or an n x 2 matrix.

M  an positive integer or a vector (m0, m1). If M = m or m0 = m1 = m, then m is a preselected degree. If m0 < m1 it specifies the set of consecutive candidate model degrees m0:m1 for searching an optimal degree, where m1-m0>3.

pi0  Initial guess of π = F(τn). Without right censored data, pi0 = 1. See 'Details'.

tau  right endpoint of support [0, τ) must be greater than or equal to the maximum observed time

IC  information criterion(s) in addition to Bayesian information criterion (BIC). Current choices are "aic" (Akaike information criterion) and/or "qhic" (Hannan–Quinn information criterion).

controls  Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.

progress  if TRUE a text progressbar is displayed

Details

Let f(t) and F(t) = 1 − S(t) be the density and cumulative distribution functions of the event time, respectively. Then f(t) on [0, τn] can be approximated by f_m(t; p) = τ_n^{−1} \sum_{i=0}^{m} p_i \beta_{m_i}(t/τ_n), where p_i ≥ 0, i = 0, . . ., m, \sum_{i=0}^{m} p_i = 1 − p_{m+1}, \beta_{m_i}(u) is the beta denisty with shapes i + 1 and m − i + 1, and τ_n is the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. We can approximate S(t) on [0, τ] by S_m(t; p) = \sum_{i=0}^{m+1} p_i \bar{B}_{m_i}(t/τ), where \bar{B}_{m_i}(u), i = 0, . . ., m, is the beta survival function with shapes i + 1 and m − i + 1, B_{m,m+1}(t) = 1, p_{m+1} = 1 − π, and π = F(τ_n). For data without right-censored time, p_{m+1} = 1 − π = 0. The search for optimal degree m is stoped if either m1 is reached or the test for change-point results in a p-value pval smaller than sig.level.

Each row of data, (l, u), is the interval containing the event time. Data is uncensored if l = u, right censored if u = Inf or u = NA, and left censored data if l = 0.

Value

a class 'mable' object with components

- p the estimated p with degree m selected by the change-point method
- mloglik the maximum log-likelihood at an optimal degree m
- interval support/truncation interval (0, b)
- M the vector (m0, m1), where m1 is the last candidate when the search stoped
- m the selected optimal degree by the method of change-point
- lk log-likelihoods evaluated at m \in \{m_0, . . ., m_1\}
- lr likelihood ratios for change-points evaluated at m \in \{m_0 + 1, . . ., m_1\}
- tau.n maximum observed time τ_n
- tau.right right endpoint of support [0, τ)
- ic a list containing the selected information criterion(s)
mable.mvar

- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees
- convergence an integer code. 0 indicates successful completion (the iteration is convergent).
  1 indicates that the maximum candidate degree had been reached in the calculation;
- delta the final pval of the change-point for selecting the optimal degree \( m \);

Author(s)

Zhong Guan <zguan@iusb.edu>

References


See Also

mable.group

Examples

```r
library(mable)
bcos<cosmesis
bc.res0<-mable.ic(bcos[bcos$treat=="RT",1:2], M=c(1,50), IC="none")
b.res1<-mable.ic(bcos[bcos$treat=="RCT",1:2], M=c(1,50), IC="none")
op<par(mfrow=c(2,2),lwd=2)
plot(bc.res0, which="change-point", lgd.x="right")
plot(bc.res1, which="change-point", lgd.x="right")
plot(bc.res0, which="survival", add=FALSE, xlab="Months", ylim=c(0,1), main="Radiation Only")
legend("topright", bty="n", lty=1:2, col=1:2, c(expression(hat(S)[CP]), expression(hat(S)[BIC])))
plot(bc.res1, which="survival", add=FALSE, xlab="Months", main="Radiation and Chemotherapy")
legend("topright", bty="n", lty=1:2, col=1:2, c(expression(hat(S)[CP]), expression(hat(S)[BIC])))
par(op)
```

mable.mvar  Maximum Approximate Bernstein Likelihood Estimate of Multivariate Density Function

Description

Maximum Approximate Bernstein Likelihood Estimate of Multivariate Density Function
Usage

```r
mable.mvar(
 x,
 M0 = 1,
 M,
 search = TRUE,
 interval = NULL,
 use.mar.deg = TRUE,
 high.dim = FALSE,
 criterion = c("cdf", "pdf"),
 controls = mable.ctrl(),
 progress = TRUE
)
```  

Arguments

- **x**: an \(n \times d\) matrix or data.frame of multivariate sample of size \(n\)
- **M0**: a positive integer or a vector of \(d\) positive integers specify starting candidate degrees for searching optimal degrees.
- **M**: a positive integer or a vector of \(d\) positive integers specify the maximum candidate or the given model degrees for the joint density.
- **search**: logical, whether to search optimal degrees between \(M0\) and \(M\) or not but use \(M\) as the given model degrees for the joint density.
- **interval**: a vector of two endpoints or a \(d \times 2\) matrix, each row containing the endpoints of support/truncation interval for each marginal density. If missing, the \(i\)-th row is assigned as \(c(\min(x[,i]), \max(x[,i]))\).
- **use.mar.deg**: logical, if TRUE, the optimal degrees are selected based on marginal data, otherwise, the optimal degrees are those minimize the maximum \(L2\) distance between marginal \(cdf\) or \(pdf\) estimated based on marginal data and the joint data. See details.
- **high.dim**: logical, data are high dimensional/large sample or not if TRUE, run a slower version procedure which requires less memory.
- **criterion**: either \(cdf\) or \(pdf\) should be used for selecting optimal degrees. Default is "\(cdf\)"
- **controls**: Object of class `mable.ctrl()` specifying iteration limit and the convergence criterion \(\epsilon\). Default is `mable.ctrl`. See Details.
- **progress**: if TRUE a text progressbar is displayed

Details

A \(d\)-variate density \(f\) on a hyperrectangle \([a, b] = [a_1, b_1] \times \cdots \times [a_d, b_d]\) can be approximated by a mixture of \(d\)-variate beta densities on \([a, b]\), \(\beta_{m,j}(x) = \prod_{i=1}^{d} \beta_{m_i,j_i}((x_i - a_i)/(b_i - a_i))/((b_i - a_i))\), with proportion \(p(j_1, \ldots, j_d), 0 \leq j_i \leq m_i, i = 1, \ldots, d\). Let \(\hat{F}_i(\hat{f}_i)\) be an estimate with degree \(\hat{m}_i\) of the \(i\)-th marginal \(cdf\) (\(pdf\)) based on marginal data \(x[,i], i = 1, \ldots, d\). If `search=TRUE` and `use.marginal=TRUE`, then the optimal degrees are \((\hat{m}_1, \ldots, \hat{m}_d)\). If `search=TRUE` and `use.marginal=FALSE`,
then the optimal degrees \( \hat{m}_1, \ldots, \hat{m}_d \) are those that minimize the maximum of \( L_2 \)-distance between \( \hat{F}_i(\hat{f}_i) \) and the estimate of \( F_i(f_i) \) based on the joint data with degrees \( m = (m_1, \ldots, m_d) \) for all \( m \) between \( M_0 \) and \( M \) if criterion="cdf" (criterion="pdf").

For large data and multimodal density, the search for the model degrees is very time-consuming. In this case, it is suggested that the degrees are selected based on marginal data using mable or optimable.

**Value**

A list with components

- \( m \) a vector of the selected optimal degrees by the method of change-point
- \( p \) a vector of the mixture proportions \( p(j_1, \ldots, j_d) \), arranged in the column-major order of \( j = (j_1, \ldots, j_d) \), \( 0 \leq j_i \leq m_i, i = 1, \ldots, d \).
- \( \text{mloglik} \) the maximum log-likelihood at an optimal degree \( m \)
- \( \text{pval} \) the p-values of change-points for choosing the optimal degrees for the marginal densities
- \( M \) the vector \((m_1, m_2, \ldots, m_d)\), where \( m_i \) is the largest candidate degree when the search stopped for the \( i \)-th marginal density
- \( \text{interval} \) support hyperrectangle \( [a, b] = [a_1, b_1] \times \cdots \times [a_d, b_d] \)
- \( \text{convergence} \) An integer code. 0 indicates successful completion (the EM iteration is convergent). 1 indicates that the iteration limit \( \text{maxit} \) had been reached in the EM iteration;

**Author(s)**

Zhong Guan <zguan@iusb.edu>

**References**


**See Also**

mable, optimable

**Examples**

```r
Old Faithful Data
a<-c(0, 40); b<-c(7, 110)
an<- mable.mvar(faithful, M = c(46,19), search =FALSE)
 interval = cbind(a,b), progress=FALSE)
plot(ans, which="density")
plot(ans, which="cumulative")
```
mable.ph  

Mable fit of Cox's proportional hazards regression model

Description

Maximum approximate Bernstein/Beta likelihood estimation in Cox's proportional hazards regression model based on internal censored event time data.

Usage

mable.ph(
  formula,  
  data,  
  M,  
  g = NULL,  
  pi0 = NULL,  
  tau = Inf,  
  x0 = NULL,  
  controls = mable.ctrl(),  
  progress = TRUE
)

Arguments

- **formula**: regression formula. Response must be \( \text{cbind} \). See 'Details'.
- **data**: a dataset
- **M**: a positive integer or a vector \((m_0, m_1)\). If \( M = m \) or \( m_0 = m_1 = m \), then \( m \) is a preselected degree. If \( m_0 < m_1 \) it specifies the set of consecutive candidate model degrees \( m_0:m_1 \) for searching an optimal degree, where \( m_1 - m_0 \geq 3 \).
- **g**: initial guess of \( d \)-vector of regression coefficients. See 'Details'.
- **pi0**: Initial guess of \( \pi(x_0) = F(\tau_n | x_0) \). Without right censored data, \( pi0 = 1 \). See 'Details'.
- **tau**: right endpoint of support \([0, \tau] \) must be greater than or equal to the maximum observed time
- **x0**: a working baseline covariate. See 'Details'.
- **controls**: Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.
- **progress**: if TRUE a text progressbar is displayed

Details

Consider Cox's PH model with covariate for interval-censored failure time data: 

\[
S(t | x) = S(t | x_0) \exp(\gamma'(x - x_0))
\]

where \( x_0 \) satisfies \( \gamma'(x - x_0) \geq 0 \). Let \( f(t | x) \) and \( F(t | x) = 1 - S(t | x) \) be the density and cumulative distribution functions of the event time given \( X = x \), respectively. Then \( f(t | x_0) \) on \([0, \tau_n] \) can be approximated by 

\[
f_m(t | x_0, p) = \tau_n^{-1} \sum_{i=0}^{m} p_i \beta_{mi}(t / \tau_n), \quad \text{where } p_i \geq 0, \ i = 0, \ldots, m, \ \sum_{i=0}^{m} p_i = 1
\]

\[
\sum_{i=0}^{m} p_i \beta_{mi}(t / \tau_n)
\]

\[
\sum_{i=0}^{m} p_i \beta_{mi}(t / \tau_n)
\]
$1 - p_{m+1}, \beta_{mi}(u)$ is the beta density with shapes $i+1$ and $m-i+1$, and $\tau_n$ is the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. So we can approximate $S(t|x_0)$ on $[0, \tau_n]$ by $S_m(t|x_0; p) = \sum_{i=0}^{m+1} p_i \hat{B}_{mi}(t/\tau_n)$, where $\hat{B}_{mi}(u), i = 0, \ldots, m$, is the beta survival function with shapes $i+1$ and $m-i+1$, and $\tau_n$ is the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. For data without right-censored time, $p_{m+1} = 1 - \pi(x_0) = 0$.

Response variable should be of the form $\text{cbind}(l, u)$, where $(l, u)$ is the interval containing the event time. Data is uncensored if $l = u$, right censored if $u = \text{Inf}$ or $u = \text{NA}$, and left censored data if $l = 0$. The associated covariate contains $d$ columns. The baseline $x_0$ should chosen so that $\gamma'(x - x_0)$ is nonnegative for all the observed $x$ and all $\gamma$ in a neighborhood of its true value.

A missing initial value of $g$ is imputed by $\text{ic_sp()}$ of package $\text{icenReg}$.

The search for optimal degree $m$ stops if either $m_1$ is reached or the test for change-point results in a p-value $p_{\text{val}}$ smaller than $\text{sig.level}$. This process takes longer than $\text{maple.ph}$ to select an optimal degree.

**Value**

A list with components

- $m$ the selected/preselected optimal degree $m$
- $p$ the estimate of $p = (p_0, \ldots, p_m, p_{m+1})$, the coefficients of Bernstein polynomial of degree $m$
- coefficients the estimated regression coefficients of the PH model
- SE the standard errors of the estimated regression coefficients
- $z$ the z-scores of the estimated regression coefficients
- $m\text{loglik}$ the maximum log-likelihood at an optimal degree $m$
- $\tau.n$ maximum observed time $\tau_n$
- $\tau$ right endpoint of support $[0, \tau)$
- $x_0$ the working baseline covariates
- $\text{egx0}$ the value of $e^{\gamma'x_0}$
- convergence an integer code, 1 indicates either the EM-like iteration for finding maximum likelihood reached the maximum iteration for at least one $m$ or the search of an optimal degree using change-point method reached the maximum candidate degree, 2 indicates both occured, and 0 indicates a successful completion.
- $\text{delta}$ the final $\text{delta}$ if $m_0 = m_1$ or the final $p_{\text{val}}$ of the change-point for searching the optimal degree $m$:

and, if $m_0 < m_1$,

- $M$ the vector $(m_0, m_1)$, where $m_1$ is the last candidate degree when the search stopped
- $\text{lk}$ log-likelihoods evaluated at $m \in \{m_0, \ldots, m_1\}$
- $lr$ likelihood ratios for change-points evaluated at $m \in \{m_0 + 1, \ldots, m_1\}$
- $p_{\text{val}}$ the p-values of the change-point tests for choosing optimal model degree
- $\text{chpts}$ the change-points chosen with the given candidate model degrees
mable.reg

Mable fit of semiparametric regression model based on interval censored data

Description

Wrapping all codable fit of regression models in one function. Using maximum approximate Bernstein/Beta likelihood estimation to fit semiparametric regression models: Cox ph model, proportional odds(po) model, accelerated failure time model, and so on.

Usage

mable.reg(
  formula,
  data,
  model = c("ph", "aft"),
)
mable.reg

M,
g = NULL,
pi0 = NULL,
tau = Inf,
x0 = NULL,
eta = 1,
controls = mable.ctrl(),
progress = TRUE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>regression formula. Response must be of the form <code>cbind(l, u)</code>. See 'Details'.</td>
</tr>
<tr>
<td>data</td>
<td>a dataset</td>
</tr>
<tr>
<td>model</td>
<td>the model to fit. Current options are &quot;ph&quot; (Cox PH) or &quot;aft&quot; (accelerated failure time model)</td>
</tr>
<tr>
<td>M</td>
<td>a vector ((m_0, m_1)) specifies the set of consective integers as candidate degrees</td>
</tr>
<tr>
<td>g</td>
<td>an initial guess of the regression coefficients</td>
</tr>
<tr>
<td>pi0</td>
<td>Initial guess of (\pi(x_0) = F(\tau_n</td>
</tr>
<tr>
<td>tau</td>
<td>right endpoint of support ([0, \tau)) must be greater than or equal to the maximum observed time</td>
</tr>
<tr>
<td>x0</td>
<td>a working baseline covariate. See 'Details'.</td>
</tr>
<tr>
<td>eta</td>
<td>the given positive value of (\eta). Used when <code>model=&quot;po&quot;</code>.</td>
</tr>
<tr>
<td>controls</td>
<td>Object of class <code>mable.ctrl()</code> specifying iteration limit and other control options. Default is <code>mable.ctrl</code>.</td>
</tr>
<tr>
<td>progress</td>
<td>if <code>TRUE</code> a text progressbar is displayed</td>
</tr>
</tbody>
</table>

Details

For "ph" model a missing initial guess of the regression coefficients \(g\) is obtained by `ic_sp()` of package `icenReg`. For "aft" model a missing \(g\) is imputed by the rank estimate `aftsrr()` of package `aftgee` for right-censored data. For general interval censored observations, we keep the right-censored but replace the finite interval with its midpoint and fit the data by `aftsrr()` as a right-censored data.

Value

A `mable_reg` class object

Author(s)

Zhong Guan <zguan@iusb.edu>

See Also

`mable.aft, mable.ph`
Description

Maximum approximate profile likelihood estimation of Bernstein polynomial model in accelerated failure time based on interal censored event time data with given regression coefficients which are efficient estimates provided by other semiparametric methods.

Usage

```r
maple.aft(
 formula,
 data,
 M,
 g,
 tau = NULL,
 x0 = NULL,
 controls = mable.ctrl(),
 progress = TRUE
)
```

Arguments

- `formula`: regression formula. Response must be `cbind`. See 'Details'.
- `data`: a dataset
- `M`: a positive integer or a vector \((m_0, m_1)\). If \(M = m\) or \(m_0 = m_1 = m\), then \(m\) is a pre-selected degree. If \(m_0 < m_1\) it specifies the set of consecutive candidate model degrees \(m_0:m_1\) for searching an optimal degree, where \(m_1-m_0 > 3\).
- `g`: the given \(d\)-vector of regression coefficients.
- `tau`: the right endpoint of the support or truncation interval \([0, \tau)\) of the baseline density. Default is `NULL` (unknown), otherwise if `tau` is given then it is taken as a known value of \(\tau\). See 'Details'.
- `x0`: a working baseline covariate \(x_0\), default is zero vector. See 'Details'.
- `controls`: Object of class `mable.ctrl()` specifying iteration limit and other control options. Default is `mable.ctrl`.
- `progress`: if `TRUE` a text progressbar is displayed

Details

Consider the accelerated failure time model with covariate for interval-censored failure time data:

\[
S(t|x) = S(t \exp(\gamma' (x - x_0))|x_0),
\]

where \(x_0\) is a baseline covariate. Let \(f(t|x)\) and \(F(t|x) = 1 - S(t|x)\) be the density and cumulative distribution functions of the event time given \(X = x\), respectively. Then \(f(t|x_0)\) on a support or truncation interval \([0, \tau]\) can be approximated by
\[ f_m(t|x_0; p) = \tau^{-1} \sum_{i=0}^{m} p_i \beta_{mi}(t/\tau), \] where \( p_i \geq 0, i = 0, \ldots, m, \sum_{i=0}^{m} p_i = 1, \) \( \beta_{mi}(u) \) is the beta density with shapes \( i + 1 \) and \( m - i + 1, \) and \( \tau \) is larger than the largest observed time, either uncensored time, or right endpoint of interval/\text{left censored}, or \text{left endpoint of right censored}. We can approximate \( S(t|x_0) \) on \([0, \tau]\) by 
\[ S_m(t|x_0; p) = \sum_{i=0}^{m} p_i \bar{B}_{mi}(t/\tau), \] where \( \bar{B}_{mi}(u) \) is the beta survival function with shapes \( i + 1 \) and \( m - i + 1. \)

Response variable should be of the form \( \text{cbind}(l, u) \), where \( (l, u) \) is the interval containing the event time. Data is uncensored if \( l = u \), right censored if \( u = \text{Inf} \) or \( u = \text{NA}, \) and left censored data if \( l = 0. \) The truncation time \( \tau \) and the baseline \( x_0 \) should be chosen so that \( S(t|x) = S(t \exp(\gamma'(x - x_0))|x_0) \) on \([\tau, \infty)\) is negligible for all the observed \( x. \)

The search for optimal degree \( m \) stops if either \( m_1 \) is reached or the test for change-point results in a p-value \( pval \) smaller than \( \text{sig.level}. \)

Value

A list with components

- \( m \) the selected optimal degree \( m \)
- \( p \) the estimate of \( p = (p_0, \ldots, p_m) \), the coefficients of Bernstein polynomial of degree \( m \)
- \( \text{coefficients} \) the given regression coefficients of the AFT model
- \( \text{SE} \) the standard errors of the estimated regression coefficients
- \( \text{z} \) the \( z \)-scores of the estimated regression coefficients
- \( \text{mloglik} \) the maximum log-likelihood at an optimal degree \( m \)
- \( \text{tau.n} \) maximum observed time \( \tau_n \)
- \( \text{tau} \) right endpoint of truncation interval \([0, \tau)\)
- \( x0 \) the working baseline covariates
- \( \text{egx0} \) the value of \( e^{\gamma'x_0} \)
- \( \text{convergence} \) an integer code, 1 indicates either the EM-like iteration for finding maximum likelihood reached the maximum iteration for at least one \( m \) or the search of an optimal degree using change-point method reached the maximum candidate degree, 2 indicates both occured, and 0 indicates a successful completion.
- \( \text{delta} \) the final \( \text{delta} \) if \( m_0 = m_1 \) or the final \( pval \) of the change-point for searching the optimal degree \( m; \)

and, if \( m_0 < m_1 \),

- \( M \) the vector \((m_0, m_1)\), where \( m_1 \) is the last candidate when the search stoped
- \( \text{lk} \) log-likelihoods evaluated at \( m \in \{m_0, \ldots, m_1\} \)
- \( \text{lr} \) likelihood ratios for change-points evaluated at \( m \in \{m_0 + 1, \ldots, m_1\} \)
- \( \text{pval} \) the p-values of the change-point tests for choosing optimal model degree
- \( \text{chpts} \) the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan <zguan@iusb.edu>
maple.dr

Maximum approximate profile likelihood estimate of the density ratio model

Description

Select optimal degree with a given regression coefficients.

Usage

maple.dr(
  x,
  y,
  M,
  regr,
  ...
)

Examples

## Breast Cosmesis Data
bcos=cosmesis
bcos2<-data.frame(bcos[,1:2], x=1*(bcos$treat=="RCT"))
g<-.41 #Hanson and Johnson 2004, JCGS,
res1<-maple.aft(cbind(left, right)-x, data=bcos2, M=c(1,30), g=g, tau=100, x0=1)
op<-par(mfrow=c(1,2), lwd=1.5)
plot(x=res1, which="likelihood")
plot(x=res1, y=data.frame(x=0), which="survival", model="aft", type="l", col=1,
     add=FALSE, main="Survival Function")
plot(x=res1, y=data.frame(x=1), which="survival", model="aft", lty=2, col=1)
legend("bottomleft", bty="n", lty=1:2, col=1, c("Radiation Only", "Radiation and Chemotherapy"))
par(op)
Arguments

x, y  
original two sample raw data, codex:\"Control\", y: \"Case\".

M  
a positive integer or a vector (m0, m1).

regr  
regressor vector function \( r(x) = (1, r_1(x), ..., r_d(x)) \) which returns \( n \times (d+1) \) matrix, \( n=\text{length}(x) \)

...  
additional arguments to be passed to regr

interval  
a vector (a,b) containing the endpoints of supporting/truncation interval of x and y.

alpha  
a given regression coefficient, missing value is imputed by logistic regression

vb  
code for vanishing boundary constraints, -1: \( f_0(a)=0 \) only, 1: \( f_0(b)=0 \) only, 2: both, 0: none (default).

baseline  
the working baseline, \"Control\" or \"Case\", if \text{NULL} it is chosen to the one with smaller estimated lower bound for model degree.

controls  
Object of class \text{mable.ctrl()} specifying iteration limit and the convergence criterion for EM and Newton iterations. Default is \text{mable.ctrl}. See Details.

progress  
logical: should a text progressbar be displayed

message  
logical: should warning messages be displayed

Details

Suppose that \("\text{control}\"\) and y \("\text{case}\") are independent samples from \( f_0 \) and \( f_1 \) which satisfy
\[ f_1(x) = f_0(x)\exp[\alpha_0 + \alpha' r(x)] \]  
with \( r(x) = (r_1(x), ..., r_d(x)) \). Maximum approximate Bernstein/Beta likelihood estimates of \( f_0 \) and \( f_1 \) are calculated with a given regression coefficients which are efficient estimates provided by other semiparametric methods such as logistic regression. If support is \((a,b)\) then replace \( r(x) \) by \( r[a+(b-a)x] \). For a fixed \( m \), using the Bernstein polynomial model for baseline \( f_0 \), MABLEs of \( f_0 \) and parameters \( \alpha \) can be estimated by EM algorithm and Newton iteration. If estimated lower bound \( m_0 \) for \( m \) based on \( y \) is smaller that that based on \( x \), then switch \( x \) and \( y \) and \( f_1 \) is used as baseline. If \( M=m \) or \( m0=m1=m \), then \( m \) is a preselected degree. If \( m0<m1 \) it specifies the set of consective candidate model degrees \( m_0:m_1 \) for searching an optimal degree by the change-point method, where \( m1-m0>3 \).

Value

A list with components

- \( m \) the given or a selected degree by method of change-point
- \( p \) the estimated vector of mixture proportions \( p = (p_0, ..., p_m) \) with the given or selected degree \( m \)
- \( \alpha \) the given regression coefficients
- \( m\loglik \) the maximum log-likelihood at degree \( m \)
- \( interval \) support/truncation interval \( (a,b) \)
- \( baseline \) =\"control\" if \( f_0 \) is used as baseline, or =\"case\" if \( f_1 \) is used as baseline.
- \( M \) the vector \((m0, m1)\), where \( m1 \), if greater than \( m0 \), is the largest candidate when the search stoped
• log-likelihoods evaluated at \( m \in \{m_0, \ldots, m_1\} \)
• likelihood ratios for change-points evaluated at \( m \in \{m_0 + 1, \ldots, m_1\} \)
• \textit{pval} the p-values of the change-point tests for choosing optimal model degree
• \textit{chpts} the change-points chosen with the given candidate model degrees

\textbf{Author(s)}

Zhong Guan <zguan@iusb.edu>

\textbf{References}

Guan, Z., Maximum Approximate Bernstein Likelihood Estimation of Densities in a Two-sample Semiparametric Model

\begin{verbatim}
maple.dr.group  Maximum approximate profile likelihood estimate of the density ratio model for grouped data with given regression coefficients
\end{verbatim}

\textbf{Description}

Select optimal degree of Bernstein polynomial model for grouped data with a given regression coefficients.

\textbf{Usage}

```r
maple.dr.group(
 t,
 n0, n1,
 M,
 regr,
 ..., interval = c(0, 1),
 alpha = NULL,
 vb = 0,
 controls = mable.ctrl(),
 progress = TRUE,
 message = TRUE
)
```

\textbf{Arguments}

- \texttt{t}  cutpoints of class intervals
- \texttt{n0, n1}  frequencies of two sample data grouped by the classes specified by \texttt{t}. \texttt{coden0}: "Control", \texttt{n1}: "Case".
- \texttt{M}  a positive integer or a vector \((m_0, m_1)\).
maple.dr.group

regr regressor vector function \( r(x) = (1, r_1(x), \ldots, r_d(x)) \) which returns \( n \times (d+1) \) matrix, \( n=\text{length}(x) \)

... additional arguments to be passed to regr

interval a vector \((a, b)\) containing the endpoints of supporting/truncation interval of \( x \) and \( y \).

alpha a given regression coefficient, missing value is imputed by logistic regression

vb code for vanishing boundary constraints, -1: \( f_0(a)=0 \) only, 1: \( f_0(b)=0 \) only, 2: both, 0: none (default).

contROLS Object of class \texttt{mable.ctrl()} specifying iteration limit and the convergence criterion for EM and Newton iterations. Default is \texttt{mable.ctrl}. See Details.

progress logical: should a text progressbar be displayed

message logical: should warning messages be displayed

Details

Suppose that \( n_0("\text{control}\") \) and \( n_1("\text{case}\") \) are frequencies of independent samples grouped by the classes \( t \) from \( f_0 \) and \( f_1 \) which satisfy \( f_1(x) = f_0(x) \exp[\alpha_0 + \alpha' r(x)] \) with \( r(x) = (r_1(x), \ldots, r_d(x)) \). Maximum approximate Bernstein/Beta likelihood estimates of \( f_0 \) and \( f_1 \) are calculated with a given regression coefficients which are efficient estimates provided by other semiparametric methods such as logistic regression. If support is \((a, b)\) then replace \( r(x) \) by \( r[a+(b-a)x] \). For a fixed \( m \), using the Bernstein polynomial model for baseline \( f_0 \), MABLEs of \( f_0 \) and parameters \( \alpha \) can be estimated by EM algorithm and Newton iteration. If estimated lower bound \( m_b \) for \( m \) based on \( n_1 \) is smaller that that based on \( n_0 \), then switch \( n_0 \) and \( n_1 \) and use \( f_1 \) as baseline. If \( M=m \) or \( m_0=m_1=m \), then \( m \) is a preselected degree. If \( m_0<m_1 \) it specifies the set of consective candidate model degrees \( m_0:m_1 \) for searching an optimal degree by the change-point method, where \( m_1-m_0>3 \).

Value

A list with components

- \( m \) the given or a selected degree by method of change-point
- \( p \) the estimated vector of mixture proportions \( p = (p_0, \ldots, p_m) \) with the given or selected degree \( m \)
- \( \alpha \) the given regression coefficients
- \( \text{mloglik} \) the maximum log-likelihood at degree \( m \)
- \( \text{interval} \) support/truncation interval \((a, b)\)
- \( \text{baseline} ="\text{control}" \) if \( f_0 \) is used as baseline, or ="case" if \( f_1 \) is used as baseline.
- \( \text{M} \) the vector \((m_0, m_1)\), where \( m_1 \), if greater than \( m_0 \), is the largest candidate when the search stoped
- \( \text{lk} \) log-likelihoods evaluated at \( m \in \{m_0, \ldots, m_1\} \)
- \( \text{lr} \) likelihood ratios for change-points evaluated at \( m \in \{m_0 + 1, \ldots, m_1\} \)
- \( \text{pval} \) the p-values of the change-point tests for choosing optimal model degree
- \( \text{chpts} \) the change-points chosen with the given candidate model degrees
maple.ph

Mable fit of the PH model with given regression coefficients

Description

Maximum approximate profile likelihood estimation of Bernstein polynomial model in Cox’s proportional hazards regression based on internal censored event time data with given regression coefficients which are efficient estimates provided by other semiparametric methods.

Usage

maple.ph(
  formula,
  data,
  M,
  g,
  pi0 = NULL,
  tau = Inf,
  x0 = NULL,
  controls = mable.ctrl(),
  progress = TRUE
)

Arguments

formula regression formula. Response must be cbind. See 'Details'.
data a dataset
M a positive integer or a vector (m0, m1). If M = m or m0 = m1 = m, then m is a pre-selected degree. If m0 < m1 it specifies the set of consecutive candidate model degrees m0:m1 for searching an optimal degree, where m1-m0>3.
g the given d-vector of regression coefficients
pi0 Initial guess of π(x0) = F(τn|x0). Without right censored data, pi0 = 1. See 'Details'.
tau right endpoint of support [0, τ) must be greater than or equal to the maximum observed time
x0 a working baseline covariate. See 'Details'.
controls Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.
progress if TRUE a text progressbar is displayed

Author(s)

Zhong Guan <zguan@iusb.edu>

References

Guan, Z., Application of Bernstein Polynomial Model to Density and ROC Estimation in a Semiparametric Density Ratio Model
Consider Cox’s PH model with covariate for interval-censored failure time data: \( S(t|x) = S(t|x_0)^{\exp(\gamma'(x-x_0))} \), where \( x_0 \) satisfies \( \gamma'(x-x_0) \geq 0 \). Let \( f(t|x) \) and \( F(t|x) = 1 - S(t|x) \) be the density and cumulative distribution functions of the event time given \( X = x \), respectively. Then \( f(t|x_0) \) on \([0, \tau_n]\) can be approximated by \( f_m(t|x_0; p) = \tau_n^{-1} \sum_{i=0}^{m} p_i \beta_{mi}(t/\tau_n) \), where \( p_i \geq 0, i = 0, \ldots, m, \sum_{i=0}^{m} p_i = 1 - p_{m+1}, \beta_{mi}(u) \) is the beta density with shapes \( i + 1 \) and \( m - i + 1 \), and \( \tau_n \) is the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. So we can approximate \( S(t|x_0) \) on \([0, \tau_n]\) by \( S_m(t|x_0; p) = \sum_{i=0}^{m+1} p_i \tilde{B}_{mi}(t/\tau_n) \), where \( \tilde{B}_{mi}(u), i = 0, \ldots, m \), is the beta survival function with shapes \( i + 1 \) and \( m - i + 1 \), \( \tilde{B}_{m,m+1}(t) = 1, p_{m+1} = 1 - \pi(x_0) \), and \( \pi(x_0) = F(\tau_n|x_0) \). For data without right-censored time, \( p_{m+1} = 1 - \pi(x_0) = 0 \).

Response variable should be of the form \( \text{cbind}(1, u) \), where \( (1, u) \) is the interval containing the event time. Data is uncensored if \( l = u \), right censored if \( u = \text{Inf} \) or \( u = \text{NA} \), and left censored data if \( l = 0 \). The associated covariate contains \( d \) columns. The baseline \( x0 \) should chosen so that \( \gamma'(x-x_0) \) is nonnegative for all the observed \( x \).

The search for optimal degree \( m \) stops if either \( m1 \) is reached or the test for change-point results in a p-value \( pval \) smaller than \( \text{sig.level} \).

Value

class ’mable_reg’ object, a list with components

- \( m \) the vector \((m0, m1)\), where \( m1 \) is the last candidate degree when the search stoped
- \( m \) the selected optimal degree \( m \)
- \( p \) the estimate of \( p = (p_0, \ldots, p_m, p_{m+1}) \), the coefficients of Bernstein polynomial of degree \( m \)
- \( \text{coefficients} \) the given regression coefficients of the PH model
- \( \text{nloglik} \) the maximum log-likelihood at an optimal degree \( m \)
- \( \text{lk} \) log-likelihoods evaluated at \( m \in \{m_0, \ldots, m_1\} \)
- \( \text{lr} \) likelihood ratios for change-points evaluated at \( m \in \{m_0 + 1, \ldots, m_1\} \)
- \( \text{tau.n} \) maximum observed time \( \tau_n \)
- \( \text{tau} \) right endpoint of support \([0, \tau]\)
- \( x0 \) the working baseline covariates
- \( \text{egx0} \) the value of \( e^{\gamma'x_0} \)
- \( \text{convergence} \) an integer code. 0 indicates successful completion (the iteration is convergent).
- 1 indicates that the maximum candidate degree had been reached in the calculation;
- \( \text{delta} \) the final convergence criterion for EM iteration;
- \( \text{chpts} \) the change-points among the candidate degrees;
- \( \text{pom} \) the p-value of the selected optimal degree \( m \) as a change-point;

Author(s)

Zhong Guan <zguan@iusb.edu>
# marginal.p

The mixing proportions of marginal distribution from the mixture of multivariate beta distribution

## Description

The mixing proportions of marginal distribution from the mixture of multivariate beta distribution

## Usage

```
marginal.p(p, m)
```
Arguments

\(p\)  the mixing proportions of the mixture of multivariate beta distribution

\(m\)  the model degrees \(m=(m_1, \ldots, m_d)\) of the mixture of multivariate beta distribution

Value

a list of mixing proportions of all the marginal distributions

---

**optim.gcp**

Choosing optimal model degree by gamma change-point method

Description

Choose an optimal degree using gamma change-point model with two changing shape and scale parameters.

Usage

\[\text{optim.gcp(obj)}\]

Arguments

\(obj\)  a class "mable" or 'mable_reg' object containing a vector \(M = (m_0, m_1)\), log-likelihoods evaluated evaluated at \(m \in \{m_0, \ldots, m_1\}\)

Value

a list with components

- \(\text{m}\) the selected optimal degree \(m\)
- \(\text{M}\) the vector \((m_0, m_1)\), where \(m_1\) is the last candidate when the search stopped
- \(\text{mloglik}\) the maximum log-likelihood at degree \(m\)
- \(\text{interval}\) support/truncation interval \((a, b)\)
- \(\text{lk}\) log-likelihoods evaluated at \(m \in \{m_0, \ldots, m_1\}\)
- \(\text{lr}\) likelihood ratios for change-points evaluated at \(m \in \{m_0 + 1, \ldots, m_1\}\)
- \(\text{pval}\) the p-values of the change-point tests for choosing optimal model degree
- \(\text{chpts}\) the change-points chosen with the given candidate model degrees
Examples

```r
simulated data
p <- c(1:5, 5:1)
p <- p/sum(p)
x <- rmixbeta(100, p)
res1 <- mable(x, M=c(2, 50), IC="none")
m1 <- res1$m[1]
res2 <- optim.gcp(res1)
m2 <- res2$m
op <- par(mfrow=c(1, 2))
plot(res1, which="likelihood", add=FALSE)
plot(res2, which="likelihood")
#segments(m2, min(res1$lk), m2, res2$mloglik, col=4)
plot(res1, which="change-point", add=FALSE)
plot(res2, which="change-point")
par(op)
```

---

**optimable**

$mable$ with degree selected by the method of moment and method of mode

Description

Maximum Approximate Bernstein/Beta Likelihood Estimation with an optimal model degree estimated by the Method of Moment

Usage

```r
optimable(
 x, interval, m = NULL, mu = NULL, lam = NULL, modes = NULL, nmod = 1, ushaped = FALSE, maxit = 50L
)
```

Arguments

- **x**  
  a univariate sample data in interval
- **interval**  
  a closed interval $c(a,b)$, default is $[0,1]$
- **m**  
  initial degree, default is 2 times the number of modes $nmod$. 
mu  a vector of component means of multimodal mixture density, default is NULL for unimodal or unknown
lam  a vector of mixture proportions of same length of mu
modes a vector of the locations of modes, if it is NULL (default) and multimode::locmodes()
nmod the number of modes, if nmod=0, the lower bound for m is estimated based on mean and variance only.
ushaped logical, whether or not the density is clearly U-shaped including J- and L-shaped with mode occurs at the endpoint of the support.
maxit maximum iterations

Details
If the data show a clear uni- or multi-modal distribution, then give the value of nmod as the number of modes. Otherwise nmod=0. The degree is estimated by the iterative method of moment with an initial degree estimated by the method of mode. For multimodal density, if useful estimates of the component means mu and proportions lam are available then they can be used to give an initial degree. If the distribution is clearly U-, J-, or L-shaped, i.e., the mode occurs at the endpoint of interval, then set ushaped=TRUE. In this case the degree is estimated by the method of mode.

Value
A class "mable" object with components
- m the given or a selected degree by method of change-point
- p the estimated vector of mixture proportions \( p = (p_0, \ldots, p_m) \) with the selected/given optimal degree \( m \)
- nlloglik the maximum log-likelihood at degree \( m \)
- interval support/truncation interval \((a, b)\)
- convergence An integer code. 0 indicates successful completion (all the EM iterations are convergent and an optimal degree is successfully selected in \( m \)). Possible error codes are
  - 1, indicates that the iteration limit maxit had been reached in at least one EM iteration;
  - 2, the search did not finish before m1.
- delta the convergence criterion delta value

Author(s)
Zhong Guan <zguan@iusb.edu>

Examples

```r
Old Faithful Data
x<-faithful
x1<-faithful[,1]
x2<-faithful[,2]
a<-c(0, 40); b<-c(7, 110)
mu<-(apply(x,2,mean)-a)/(b-a)
```
s2 <- apply(x, 2, var)/(b-a)^2
# mixing proportions
lambda <- c(mean(x1<3), mean(x2<65))
# guess component mean
mu1 <- (c(mean(x1[x1<3]), mean(x2[x2<65]))-a)/(b-a)
mu2 <- (c(mean(x1[x1>=3]), mean(x2[x2>=65]))-a)/(b-a)
# estimate lower bound for m
mb <- ceiling((mu*(1-mu)-s2)/(s2-lambda*(1-lambda)*(mu1-mu2)^2)-2)
mb
m1 <- optimable(x1, interval=c(a[1], b[1]), nmod=2, modes=c(2,4.5))$m
m2 <- optimable(x2, interval=c(a[2], b[2]), nmod=2, modes=c(52.5, 80))$m
m1; m2
erupt1 <- mable(x1, M=mb[1], interval=c(a[1], b[1]))
erupt2 <- mable(x1, M=m1, interval=c(a[1], b[1]))
wait1 <- mable(x2, M=mb[2], interval=c(a[2], b[2]))
wait2 <- mable(x2, M=m2, interval=c(a[2], b[2]))
ans1 <- mable.mvar(faithful, M=mb[1], interval=c(a[1], b[1]))
an2 <- mable.mvar(faithful, M=c(m1, m2), interval=c(a[1], b[1]))
op <- par(mfrow=c(1,2), cex=0.8)
hist(x1, probability = TRUE, col="grey", border="white", main="",
xlab="Eruptions", ylim=c(0,.65), las=1)
plot(erupt1, add=TRUE, "density")
plot(erupt2, add=TRUE, "density", lty=2, col=2)
legend("topleft", lty=c(1,2), col=1:2, bty="n", cex=.7,
c(expression(paste("m = ", m[b]))), expression(paste("m = ", hat(m)))))
hist(x2, probability = TRUE, col="grey", border="white", main="",
xlab="Waiting", las=1)
plot(wait1, add=TRUE, "density")
plot(wait2, add=TRUE, "density", lty=2, col=2)
legend("topleft", lty=c(1,2), col=1:2, bty="n", cex=.7,
c(expression(paste("m = ", m[b]))), expression(paste("m = ", hat(m)))))
par(op)
op <- par(mfrow=c(1,2), cex=0.7)
plot(ans1, which="density", contour=TRUE)
plot(ans2, which="density", contour=TRUE, add=TRUE, lty=2, col=2)
plot(ans1, which="cumulative", contour=TRUE)
plot(ans2, which="cumulative", contour=TRUE, add=TRUE, lty=2, col=2)
par(op)

### Pancreas

**Pancreatic Cancer Biomarker Data**

**Description**

Contain sera measurements from 51 control patients with pancreatitis and 90 case patients with pancreatic cancer at the Mayo Clinic with a cancer antigen, CA125, and with a carbohydrate antigen, CA19-9 (Wieand, et al, 1989)
Usage

data(pancreas)

Format

A data frame with 141 rows and 3 variables.

- `ca199`. CA19-9 levels
- `ca125`. CA125 levels
- `status`. 0 = controls (non-cancer) and 1 = cases (cancer).

Source


References


Examples

data(pancreas)

---

plot.mable

Plot method for class 'mable'

Description

Plot method for class 'mable'

Usage

```r
S3 method for class 'mable'
plot(
x,
which = c("density", "cumulative", "survival", "likelihood", "change-point", "all"),
add = FALSE,
contour = FALSE,
lgd.x = NULL,
lgd.y = NULL,
x = 512,
...
)
```
Arguments

x: Class "mable" object return by mablem, mable, mablem.group or mable.group functions which contains p, mloglik, and M = m0:m1, lk, lr.

which: indicates which graphs to plot, options are "density", "cumulative", "likelihood", "change-point", "all". If not "all", which can contain more than one options.

add: logical add to an existing plot or not

contour: logical plot contour or not for two-dimensional data

lgd.x, lgd.y: coordinates of position where the legend is displayed

nx: number of evaluations of density, or cumulative distribution curve to be plotted.

... additional arguments to be passed to the base plot function

Value

The data used for 'plot()', 'lines()', or 'persp()' are returned invisibly.

Description

Plot method for class 'mable_reg'

Usage

## S3 method for class 'mable_reg'
plot(x, y, newdata = NULL, ntime = 512, xlab = "Time", which = c("survival", "likelihood", "change-point", "density", "all"), add = FALSE, ...)

Arguments

x: a class 'mable_reg' object return by functions such as mablem, ph which contains M, coefficients, p, m, x0, tau.n, tau lk, lr.

y: a new data.frame of covariate value(s) as row(s), whose columns are arranged in the same order as in the formula called by the function that returned the object x.

newdata: a new data.frame (ignored if y is included), imputed by the working baseline x0 if both missing.
se.coef.dr

number of evaluations of density, survival or cumulative distribution curve to be plotted.

xlab

x-axis label

which

indicates which graphs to plot, options are "survival", "likelihood", "change-point", "density", or "all". If not "all", which can contain more than one options.

add

logical add to an existing plot or not

... additional arguments to be passed to the base plot function

Author(s)

Zhong Guan <zguan@iusb.edu>

se.coef.dr  Standard errors of coefficients in density ratio model

Description

Bootstrap estimates of standard errors for the regression coefficients which are estimated by maximum approximate Bernstein/Beta likelihood estimation method in a density ratio model based on two-sample raw data.

Usage

se.coef.dr(
  obj,
  grouped = FALSE,
  B = 500,
  parallel = FALSE,
  ncore = NULL,
  controls = mable.ctrl()
)

Arguments

obj  Class 'mable_dr' object return by mable.dr or mable.dr.group functions

grouped  logical: are data grouped or not.

B  number of bootstrap runs.

parallel  logical: do parallel or not.

ncore  number of cores used for parallel computing. Default is half of availables.

controls  Object of class mable.ctrl() specifying iteration limit and the convergence criterion for EM and Newton iterations. Default is mable.ctrl. See Details.
Details

Bootstrap method is used based on bootstrap samples generated from the MABLE’s of the densities \( f_0 \) and \( f_1 \). The bootstrap samples are fitted by the Bernstein polynomial model and the `glm()` to obtain bootstrap versions of coefficient estimates.

Value

the estimated standard errors

Description

Produces a summary of a mable fit.

Usage

```r
S3 method for class 'mable'
summary(object, ...)

S3 method for class 'mable_reg'
summary(object, ...)
```

Arguments

- `object` Class "mable" or 'mable_reg' object return by `mable` or `mable.xxxx` functions
- `...` for future methods

Value

Invisibly returns its argument, `object`.

Examples

```r
Breast Cosmesis Data
bcos=cosmesis
bcos2=data.frame(bcos[,1:2], x=1*(bcos$treat=="RCT"))
aft.res<=mable.aft(cbind(left, right)~x, data=bcos2, M=c(1, 30), g=.41,
 tau=100, x0=1)
summary(aft.res)
```
The annual flow data of Vaal River at Standerton as given by Table 1.1 of Linhart and Zucchini (1986) give the flow in millions of cubic metres.

Usage

data(Vaal.Flow)

Format

The format is: int [1:65] 222 1094 452 1298 882 988 276 216 103 490 ...

References


Examples

data(Vaal.Flow)
Index

* Accelerated failure time model
  mable.aft, 11
  maple.aft, 32
* Additive measurement error
  mable.decon, 15
* Bernstein polynomial model
  dmixbeta, 4
  dtmixbeta, 6
  mable, 8
  mable.decon, 15
  mable.group, 21
* Cox proportional hazards model
  mable.ph, 28
  mable.reg, 30
  maple.ph, 38
* Density deconvolution
  mable.decon, 15
* Mixture beta distribution
  dmixbeta, 4
  dtmixbeta, 6
* accelerated failure time model
  mable.reg, 30
* datasets
  chicken.embryo, 2
  cosmesis, 3
  pancreas, 44
  Vaal.Flow, 49
* density estimation
  mable.mvar, 25
* distribution
  dmixbeta, 4
  dtmixbeta, 6
  mable, 8
  mable.aft, 11
  mable.group, 21
  mable.mvar, 25
  mable.ph, 28
  mable.reg, 30
  maple.aft, 32
  maple.ph, 38
* interval censoring
  mable.aft, 11
  mable.ph, 28
  mable.reg, 30
  maple.aft, 32
  maple.ph, 38
* models
  dmixbeta, 4
  dtmixbeta, 6
  mable, 8
  mable.aft, 11
  mable.group, 21
  mable.ph, 28
  mable.reg, 30
  maple.aft, 32
  maple.ph, 38
* multivariate Bernstein polynomial model
  mable.mvar, 25
* multivariate
  mable.mvar, 25
* nonparametric
  dmixbeta, 4
  dtmixbeta, 6
  mable, 8
  mable.aft, 11
  mable.group, 21
  mable.mvar, 25
  mable.ph, 28
  mable.reg, 30
  maple.aft, 32
  maple.ph, 38
* regression
  mable.aft, 11
  mable.ph, 28
  mable.reg, 30
  maple.aft, 32
  maple.ph, 38
* smooth
INDEX

dmixbeta, 4
dtmixbeta, 6
mable, 8
mable.aft, 11
mable.group, 21
mable.ph, 28
mable.reg, 30
maple.aft, 32
maple.ph, 38

* survival
  mable.aft, 11
  mable.ph, 28
  mable.reg, 30
  maple.aft, 32
  maple.ph, 38

* univar
  mable, 8
  mable.group, 21

chicken.embryo, 2
cosmesis, 3
dmixbeta, 4
dmixmvbeta, 5
dtmixbeta, 6

mable, 5, 7, 8, 27
mable.aft, 11, 31, 34
mable.ctrl, 8, 12, 14, 15, 18, 20, 21, 24, 26,
  28, 31, 32, 35, 37, 38, 47
mable.decon, 15
mable.dr, 17
mable.dr.group, 19
mable.group, 21, 25
mable.ic, 23, 23
mable.mvar, 25
mable.ph, 28, 31, 40
mable.reg, 30
maple.aft, 13, 32
maple.dr, 34
maple.dr.group, 36
maple.ph, 29, 30, 38
marginal.p, 40

optim.gcp, 41
optimable, 9, 10, 27, 42

pancreas, 44
plot.mable, 45

plot.mable_reg, 46
pmixbeta(dmixbeta), 4
pmixmvbeta(dmixmvbeta), 5
ptmixbeta(dtmixbeta), 6
qmixbeta(dmixbeta), 4
qtmixbeta(dtmixbeta), 6
rmixbeta(dmixbeta), 4
rmixmvbeta(dmixmvbeta), 5
rtmixbeta(dtmixbeta), 6

se.coef.dr, 47
summary.mable, 48
summary.mable_reg(summary.mable), 48

Vaal.Flow, 49