Package ‘MultiRNG’

May 14, 2019

Type Package
Title Multivariate Pseudo-Random Number Generation
Version 1.2.2
Date 2019-05-14
Author Hakan Demirtas, Rawan Allozi, Ran Gao
Maintainer Ran Gao <rgao@uic.edu>
License GPL-2 | GPL-3
NeedsCompilation no
Repository CRAN
Date/Publication 2019-05-14 20:30:03 UTC

R topics documented:

- MultiRNG-package .. 2
- draw.correlated.binary .. 3
- draw.d.variate.normal ... 4
- draw.d.variate.t .. 5
- draw.d.variate.uniform ... 6
- draw.dirichlet .. 7
- draw.dirichlet.multinomial 8
- draw.inv.wishart .. 9
- draw.multinomial ... 10
- draw.multivariate.hypergeometric 11
- draw.multivariate.laplace 12
- draw.wishart ... 13
- generate.point.in.sphere 14
- loc.min ... 14

Index 16
Description

This package implements the algorithms described in Demirtas (2004) for pseudo-random number generation of 11 multivariate distributions. The following multivariate distributions are available: Normal, t, Uniform, Bernoulli, Hypergeometric, Beta (Dirichlet), Multinomial, Dirichlet-Multinomial, Laplace, Wishart, and Inverted Wishart.

This package contains 11 main functions and 2 auxiliary functions. The methodology for each random-number generation procedure varies and each distribution has its own function. For multivariate normal, `draw.d.variate.normal` employs the Cholesky decomposition and a vector of univariate normal draws and for multivariate t, `draw.d.variate.t` employs the Cholesky decomposition and a vector of univariate normal and chi-squared draws. `draw.d.variate.uniform` is based on cdf of multivariate normal deviates (Falk, 1999) and `draw.correlated.binary` generates correlated binary variables using an algorithm developed by Park, Park and Shin (1996) and makes use of the auxiliary function `loc.min`. `draw.multivariate.hypergeometric` employs sequential generation of succeeding conditionals which are univariate hypergeometric. Furthermore, `draw.dirichlet` uses the ratios of gamma variates with a common scale parameter and `draw.multinomial` generates data via sequential generation of marginals which are binomials. `draw.dirichlet.multinomial` is a mixture distribution of a multinomial that is a realization of a random variable having a Dirichlet distribution. `draw.multivariate.laplace` is based on generation of a point s on the d-dimensional sphere and utilizes the auxiliary function `generate.point.in.sphere`. `draw.wishart` and `draw.inv.wishart` employs Wishart variates that follow d-variate normal distribution.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>MultiRNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.2.2</td>
</tr>
<tr>
<td>Date:</td>
<td>2019-05-14</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-2</td>
</tr>
</tbody>
</table>

Author(s)

Hakan Demirtas, Rawan Allozi, Ran Gao

Maintainer: Ran Gao <rgao8@uic.edu>

References

draw.correlated.binary

draw.correlated.binary

Generation of Correlated Binary Data

Description

This function implements pseudo-random number generation for a multivariate Bernoulli distribution (correlated binary data).

Usage

```r
draw.correlated.binary(no.row,d,prop.vec,corr.mat)
```

Arguments

- `no.row`: Number of rows to generate.
- `d`: Number of variables to generate.
- `prop.vec`: Vector of means.
- `corr.mat`: Correlation matrix.

Value

A `no.row` x `d` matrix of generated data.

References

See Also

`loc.min`

Examples

```r
mat <- matrix(c(1,0.2,0.3,0.2,1,0.2,0.3,0.2,1), nrow=3, ncol=3)
propvec <- c(0.3,0.5,0.7)
mydata <- draw.correlated.binary(no.row=1e5,d=3,prop.vec=propvec,corr.mat=mat)
apply(mydata,2,mean) - propvec
cor(mydata) - mat
```
draw.d.variate.normal

Pseudo-Random Number Generation under Multivariate Normal Distribution

Description

This function implements pseudo-random number generation for a multivariate normal distribution with pdf

\[f(x | \mu, \Sigma) = c \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right) \]

for \(-\infty < x < \infty\) and \(c = (2\pi)^{-d/2} |\Sigma|^{-1/2}\), \(\Sigma\) is symmetric and positive definite, where \(\mu\) and \(\Sigma\) are the mean vector and the variance-covariance matrix, respectively.

Usage

\[
\text{draw.d.variate.normal}(\text{no.row}, d, \text{mean.vec}, \text{cov.mat})
\]

Arguments

- **no.row**: Number of rows to generate.
- **d**: Number of variables to generate.
- **mean.vec**: Vector of means.
- **cov.mat**: Variance-covariance matrix.

Value

A \(\text{no.row} \times d\) matrix of generated data.

Examples

\[
\begin{align*}
\text{cmat} & \leftarrow \text{matrix}(c(1,0.2,0.3,0.2,1,0.2,0.3,0.2,1), \text{nrow}=3, \text{ncol}=3) \\
\text{meanvec} & \leftarrow c(0,3,7) \\
\text{mydata} & \leftarrow \text{draw.d.variate.normal}(\text{no.row}=1e5, d=3, \text{mean.vec}=\text{meanvec}, \text{cov.mat}=\text{cmat}) \\
\text{apply}(\text{mydata}, 2, \text{mean}) & \leftarrow \text{meanvec} \\
\text{cor}(\text{mydata}) & \leftarrow \text{cmat}
\end{align*}
\]
draw.d.variate.t

Pseudo-Random Number Generation under Multivariate t Distribution

Description

This function implements pseudo-random number generation for a multivariate t distribution with pdf

\[
 f(x|\mu, \Sigma, \nu) = c \left(1 + \frac{1}{\nu}(x - \mu)^T \Sigma^{-1} (x - \mu) \right)^{-\frac{\nu + d}{2}}
\]

for \(-\infty < x < \infty\) and \(c = \frac{\Gamma(\frac{\nu + d}{2})}{\Gamma(\frac{\nu}{2}) \sqrt{d/\nu \pi \det(\Sigma)}}\), where \(\mu\), \(\Sigma\), and \(\nu\) are the mean vector, the variance-covariance matrix, and the degrees of freedom, respectively.

Usage

\[
\text{draw.d.variate.t}(\text{dof}, \text{no.row}, \text{d}, \text{mean.vec}, \text{cov.mat})
\]

Arguments

- **dof**: Degrees of freedom.
- **no.row**: Number of rows to generate.
- **d**: Number of variables to generate.
- **mean.vec**: Vector of means.
- **cov.mat**: Variance-covariance matrix.

Value

A `no.row x d` matrix of generated data.

Examples

```r
cmat<-matrix(c(1,0.2,0.3,0.2,1,0.2,0.2,0.3,0.2,1), nrow=S, ncol=S)
meanvec=c(0,S,7)
mydata=draw.d.variate.t(dof=5, no.row=1e5, d=S, mean.vec=meanvec, cov.mat=cmat)
apply(mydata,2,mean)-meanvec
cor(mydata)-cmat
```
draw.d.variate.uniform

Pseudo-Random Number Generation under Multivariate Uniform Distribution

Description

This function implements pseudo-random number generation for a multivariate uniform distribution with specified mean vector and covariance matrix.

Usage

draw.d.variate.uniform(no.row, d, cov.mat)

Arguments

- **no.row**: Number of rows to generate.
- **d**: Number of variables to generate.
- **cov.mat**: Variance-covariance matrix.

Value

A `no.row x d` matrix of generated data.

References

Examples

```r
cmat <- matrix(c(1, 0.2, 0.3, 0.2, 1, 0.2, 0.3, 0.2, 1), nrow=3, ncol=3)
mydata <- draw.d.variate.uniform(no.row=1e5, d=3, cov.mat=cmat)
apply(mydata, 2, mean) %>% rep(0.5, 3)
cor(mydata) %>% cmat
```
Description

This function implements pseudo-random number generation for a multivariate beta (Dirichlet) distribution with pdf

\[f(x|\alpha_1, \ldots, \alpha_d) = \frac{\Gamma(\sum_{j=1}^{d} \alpha_j)}{\prod_{j=1}^{d} \Gamma(\alpha_j)} \prod_{j=1}^{d} x_j^{\alpha_j-1} \]

for \(\alpha_j > 0, x_j \geq 0, \) and \(\sum_{j=1}^{d} x_j = 1, \) where \(\alpha_1, \ldots, \alpha_d \) are the shape parameters and \(\beta \) is a common scale parameter.

Usage

\texttt{draw.dirichlet(no.row, d, alpha, beta)}

Arguments

- \texttt{no.row} Number of rows to generate.
- \texttt{d} Number of variables to generate.
- \texttt{alpha} Vector of shape parameters.
- \texttt{beta} Scale parameter common to \(d \) variables.

Value

A \(\texttt{no_row} \times d \) matrix of generated data.

Examples

\begin{verbatim}
alpha.vec = c(1,3,4,4)
mydata = draw.dirichlet(no.row=1e5,d=4,alpha=alpha.vec,beta=2)
apply(mydata,2,mean) - alpha.vec/sum(alpha.vec)
\end{verbatim}
Pseudo-Random Number Generation under Dirichlet-Multinomial Distribution

Description

This function implements pseudo-random number generation for a Dirichlet-multinomial distribution. This is a mixture distribution that is multinomial with parameter θ that is a realization of a random variable having a Dirichlet distribution with shape vector α. N is the sample size and β is a common scale parameter.

Usage

draw.dirichlet.multinomial(no.row,d,alpha,beta,n)

Arguments

- no.row: Number of rows to generate.
- d: Number of variables to generate.
- alpha: Vector of shape parameters.
- beta: Scale parameter common to d variables.
- N: Sample size.

Value

A $no.row \times d$ matrix of generated data.

See Also

draw.dirichlet, draw.multinomial

Examples

alpha.vec=rep(c(1,3,4,4),N=3)
mydata=draw.dirichlet.multinomial(no.row=1e5,d=4,alpha=alpha.vec,beta=2, N=3)
apply(mydata,2,mean)=N*alpha.vec/sum(alpha.vec)
draw.inv.wishart

Pseudo-Random Number Generation under Inverted Wishart Distribution

Description

This function implements pseudo-random number generation for an inverted Wishart distribution with pdf

\[
f(x|\nu, \Sigma) = \left(2^{\nu d/2} \pi^{d(d-1)/4} \prod_{i=1}^{d} \Gamma((\nu + 1 - i)/2)\right)^{-1} |\Sigma|^{\nu/2} |x|^{-(\nu+d+1)/2} \exp\left(-\frac{1}{2} tr(\Sigma x^{-1})\right)
\]

\(x\) is positive definite, \(\nu \geq d \), and \(\Sigma^{-1} \) is symmetric and positive definite, where \(\nu \) and \(\Sigma^{-1} \) are the degrees of freedom and the inverse scale matrix, respectively.

Usage

\[
draw.inv.wishart(no.row, d, nu, inv.sigma)
\]

Arguments

- **no.row**: Number of rows to generate.
- **d**: Number of variables to generate.
- **nu**: Degrees of freedom.
- **inv.sigma**: Inverse scale matrix.

Value

A \(\text{no.row} \times d^2 \) matrix of containing Wishart deviates in the form of rows. To obtain the Inverted-Wishart matrix, convert each row to a matrix where rows are filled first.

See Also

\[
draw.wishart
\]

Examples

\[
mymat <- matrix(c(1, 0.2, 0.3, 0.2, 1, 0.2, 0.3, 0.2, 1), nrow=3, ncol=3)
draw.inv.wishart(no.row=1e5, d=3, nu=5, inv.sigma=mymat)
\]
draw.multinomial Pseudo-Random Number Generation under Multivariate Multinomial Distribution

Description

This function implements pseudo-random number generation for a multivariate multinomial distribution with pdf

\[f(x|\theta_1, \ldots, \theta_d) = \frac{N!}{\prod x_j!} \prod_{j=1}^{d} \theta_{x_j} \]

for \(0 < \theta_j < 1, x_j \geq 0 \), and \(\sum_{j=1}^{d} x_j = N \), where \(\theta_1, \ldots, \theta_d \) are cell probabilities and \(N \) is the size.

Usage

draw.multinomial(no.row, d, theta, N)

Arguments

- \textit{no.row} Number of rows to generate.
- \textit{d} Number of variables to generate.
- \textit{theta} Vector of cell probabilities.
- \textit{N} Sample Size. Must be at least 2.

Value

A \textit{no.row} \times d matrix of generated data.

Examples

\begin{verbatim}
theta.vec=c(0.3,0.3,0.25,0.15) ; N=4
mydata=draw.multinomial(no.row=1e5,d=4,theta=c(0.3,0.3,0.25,0.15),N=4)
apply(mydata,2,mean)-N*theta.vec
\end{verbatim}
draw.multivariate.hypergeometric

Pseudo-Random Number Generation under Multivariate Hypergeometric Distribution

Description

This function implements pseudo-random number generation for a multivariate hypergeometric distribution.

Usage

draw.multivariate.hypergeometric(no.row,d,mean.vec,k)

Arguments

no.row Number of rows to generate.
d Number of variables to generate.
mean.vec Number of items in each category.
k Number of items to be sampled. Must be a positive integer.

Value

A \(n \times d \) matrix of generated data.

References

Examples

meanvec=c(10,10,12) ; myk=5
mydata=draw.multivariate.hypergeometric(no.row=1e5,d=3,mean.vec=meanvec,k=myk)
apply(mydata,2,mean)*myk*meanvec/sum(meanvec)
draw.multivariate.laplace

Pseudo-Random Number Generation under Multivariate Laplace Distribution

Description

This function implements pseudo-random number generation for a multivariate Laplace (double exponential) distribution with pdf
\[
f(x|\mu, \Sigma, \gamma) = c \exp\left(-((x - \mu)^T \Sigma^{-1} (x - \mu))^{\gamma/2}\right)
\]
for \(-\infty < x < \infty\) and \(c = \frac{\gamma^{d/2}}{2\pi^{d/2} \Gamma(d/\gamma)} |\Sigma|^{-1/2}\), \(\Sigma\) is symmetric and positive definite, where \(\mu\), \(\Sigma\), and \(\gamma\) are the mean vector, the variance-covariance matrix, and the shape parameter, respectively.

Usage

draw.multivariate.laplace(no.row, d, gamma, mu, Sigma)

Arguments

no.row Number of rows to generate.
d Number of variables to generate.
gamma Shape parameter.
mu Vector of means.
Sigma Variance-covariance matrix.

Value

A \(\text{no.row} \times d\) matrix of generated data.

References

See Also

generate.point.in.sphere

Examples

cmat<-matrix(c(1,0.2,0.3,0.2,1,0.2,0.3,0.2,1), nrow=3, ncol=3)
mu.vec=c(0,3,7)
mydata=draw.multivariate.laplace(no.row=1e5,d=3,gamma=2,mu=mu.vec,Sigma=cmat)
apply(mydata,2,mean)-mu.vec
cor(mydata)-cmat
Description

This function implements pseudo-random number generation for a Wishart distribution with pdf

\[f(x|\nu, \Sigma) = \frac{2^{\nu d/2} \pi^{d(d-1)/4}}{\Gamma((\nu + 1 - i)/2)} \prod_{i=1}^{d} \Gamma((\nu + 1 - i)/2) |\Sigma|^{-\nu/2} |x|^{(\nu-d-1)/2} \exp\left(-\frac{1}{2} tr(\Sigma^{-1} x)\right) \]

where \(x \) is positive definite, \(\nu \geq d \), and \(\Sigma \) is symmetric and positive definite, where \(\nu \) and \(\Sigma \) are positive definite and the scale matrix, respectively.

Usage

draw.wishart(no.row, d, nu, sigma)

Arguments

- **no.row**: Number of rows to generate.
- **d**: Number of variables to generate.
- **nu**: Degrees of freedom.
- **sigma**: Scale matrix.

Value

A \(\text{no.row} \times d^2 \) matrix of Wishart deviates in the form of rows. To obtain the Wishart matrix, convert each row to a matrix where rows are filled first.

See Also

draw.d.variate.normal

Examples

```r
mymat <- matrix(c(1,0.2,0.3,0.2,1,0.2,0.3,0.2,1), nrow=3, ncol=3)
draw.wishart(no.row=1e5,d=3,nu=5,sigma=mymat)
```
`generate.point.in.sphere`

Point Generation for a Sphere

Description

This function generates s points on a d-dimensional sphere.

Usage

`generate.point.in.sphere(no.row,d)`

Arguments

- `no.row` Number of rows to generate.
- `d` Number of variables to generate.

Value

A `no.row` × `d` matrix of coordinates of points in sphere.

References

Examples

`generate.point.in.sphere(no.row=1e5,d=3)`

`loc.min`

Minimum Location Finder

Description

This function identifies the location of the minimum value in a square matrix.

Usage

`loc.min(my.mat,d)`

Arguments

- `my.mat` A square matrix.
- `d` Dimensions of the matrix.
Value

A vector containing the row and column number of the minimum value.

Examples

```r
mat <- matrix(c(1, 0.2, 0.3, 0.2, 1, 0.2, 0.3, 0.2, 1), nrow = 3, ncol = 3)
loc.min(my.mat = mat, d = 3)
```
Index

draw.correlated.binary, 3
draw.d.variate.normal, 4, 13
draw.d.variate.t, 5
draw.d.variate.uniform, 6
draw.dirichlet, 7, 8
draw.dirichlet.multinomial, 8
draw.inv.wishart, 9
draw.multinomial, 8, 10
draw.multivariate.hypergeometric, 11
draw.multivariate.laplace, 12
draw.wishart, 9, 13

generate.point.in.sphere, 12, 14

loc.min, 3, 14

MultiRNG (MultiRNG-package), 2
MultiRNG-package, 2