Package ‘SUMMER’

February 2, 2021

Type Package

Title Spatio-Temporal Under-Five Mortality Methods for Estimation

Version 1.1.0

Date 2021-01-31

URL https://github.com/richardli/SUMMER

BugReports https://github.com/richardli/SUMMER/issues

Depends R (>= 3.5)

License GPL (>= 2)

Imports survey, stats, spdep, survival, ggplot2, utils, Matrix, reshape2, viridis, sp, shadowtext, ggridges, methods, data.table, RColorBrewer, grDevices

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Additional_repositories https://inla.r-inla-download.org/R/testing/

Suggests INLA, knitr, rmarkdown, readstata13, patchwork, rdhs, R.rsp

VignetteBuilder R.rsp, knitr

NeedsCompilation no

Author Zehang R Li [cre, aut], Bryan D Martin [aut], Yuan Hsiao [aut], Jessica Godwin [aut], Jon Wakefield [aut], Samuel J Clark [aut], Geir-Arne Fuglstad [aut], Andrea Riebler [aut]
Maintainer Zehang R Li <lizehang@gmail.com>
Repository CRAN
Date/Publication 2021-02-02 01:10:15 UTC

R topics documented:

- SUMMER-package ... 3
- aggregateSurvey .. 3
- BRFSS ... 4
- ChangeRegion ... 5
- DemoData ... 6
- DemoData2 .. 6
- DemoMap ... 7
- DemoMap2 ... 7
- expit ... 8
- getAdjusted ... 8
- getAmat .. 10
- getBirths ... 11
- getCounts .. 13
- getDiag .. 14
- getDirect ... 16
- getDirectList ... 17
- getSmoothed .. 19
- hatchPlot .. 21
- iid.new ... 24
- iid.new.pc .. 24
- KenData .. 25
- KingCounty .. 25
- logit ... 26
- MalawiData ... 26
- MalawiMap ... 27
- mapPlot ... 27
- mapPoints ... 29
- plot.SUMMERproj 30
- ridgePlot ... 32
- rst ... 35
- rw.new .. 37
- rw.new.pc ... 38
- simhyper ... 38
- smoothCluster 39
- smoothDirect 44
- smoothSurvey 48
- st.new .. 52
- st.new.pc .. 52
- tcpPlot .. 53

Index 55
SUMMER-package

SUMMER package documentation.

Description

SUMMER provides methods for spatial and spatio-temporal smoothing of demographic and health indicators using survey data, with particular focus on estimating and projecting under-five mortality rates.

Details

The development version of the package will be maintained on https://github.com/richardli/SUMMER.

aggregateSurvey

Aggregate estimators from different surveys.

Description

Aggregate estimators from different surveys.

Usage

`aggregateSurvey(data)`

Arguments

- `data` Output from `getDirectList`

Value

Estimators aggregated across surveys.

Author(s)

Zehang Richard Li
Examples

```r
## Not run:
data(DemoData)
data(DemoMap)
years <- levels(DemoData[[1]]$time)

# obtain direct estimates
data <- getDirectList(births = DemoData,
years = years,
regionVar = "region", timeVar = "time",
clusterVar = "~clustid+id",
ageVar = "age", weightsVar = "weights",
geo.recode = NULL)

# obtain maps
geo <- DemoMap$geo
mat <- DemoMap$Amat

# Simulate hyper priors
priors <- simhyper(R = 2, nsamp = 1e+05, nsamp.check = 5000, Amat = mat, only.iid = TRUE)

# combine data from multiple surveys
data <- aggregateSurvey(data)
utils::head(data)

## End(Not run)
```

BRFSS
The BRFSS dataset

Description

The Behavioral Risk Factor Surveillance System (BRFSS) is an annual telephone health survey conducted by the Centers for Disease Control and Prevention (CDC) that tracks health conditions and risk behaviors in the United States and its territories since 1984. This BRFSS dataset contains 16124 observations. The ‘diab2’ variable is the binary indicator of Type II diabetes, ‘strata’ is the strata indicator and ‘rwt_llcp’ is the final design weight. Records with missing HRA code or diabetes status are removed from this dataset. See https://www.cdc.gov/brfss/annual_data/2013/pdf/Weighting_Data.pdf for more details of the weighting procedure.

Usage

```r
data(BRFSS)
```

Format

A data.frame of 26 variables.
References

ChangeRegion

Map region names to a common set.

Description

Map region names to a common set.

Usage

ChangeRegion(data, Bmat, regionVar = "region")

Arguments

- **data**: Preprocessed data
- **Bmat**: Matrix of changes. Each row corresponds to a region name possibly in the data files, and each column corresponds to a region after mapping. The values in the matrix are binary. The row names and column names need to be specified to the region names.
- **regionVar**: String indicating the region variable. Defaults to 'region'.

Value

Data after changing region names

Author(s)

Zehang Richard Li

Examples

```r
# Construct a small test data
testdata <- data.frame(region = c("north", "south", "east", "south", "east"), index = c(1:5))

# Construct a changing rule: combining south and east
Bmat <- matrix(c(1, 0, 0, 0, 1, 1), 3, 2)
colnames(Bmat) <- c("north", "south and east")
rownames(Bmat) <- c("north", "south", "east")
print(Bmat)

# New data after transformation
test <- ChangeRegion(testdata, Bmat, "region")
print(test)
```
DemoData

Simulated child mortality person-month dataset.

Description
A small simulated dataset with 4 regions and 5 survey years. This does not represent any real country’s data and are based on a subset of the model dataset provided by DHS.

Usage
data(DemoData)

Format
A list of with five components, named by survey year.

Source
https://dhsprogram.com/data/model-datasets.cfm

DemoData2

Simulated dataset for prevalence mapping.

Description
A small fake dataset with 8 regions and two response variables: age and tobacco.use. This does not represent any real country’s data and are based on a subset of the model dataset provided by DHS.

Usage
data(DemoData2)

Format
A data.frame of 7 variables.

Source
https://dhsprogram.com/data/model-datasets.cfm
Description
Shapefiles are from 1995 Uganda Admin 1 regions provided by DHS, but the data do not represent real information about any country.

Usage
data(DemoMap)

Format
An object of class list of length 2.

Details
- geo. Geographic map files
- Amat. Adjacency matrix for regions

Source
https://spatialdata.dhsprogram.com/boundaries/#view=table&countryId=UG

Description
Shapefiles are from 2014 Kenya Admin 1 regions provided by DHS.

Usage
data(DemoMap2)

Format
An object of class list of length 2.

Details
- geo Geographic map files
- Amat Adjacency matrix for regions

Source
https://spatialdata.dhsprogram.com/boundaries/#view=table&countryId=KE
expit

Expit transformation

Description

Expit transformation

Usage

```r
expit(x)
```

Arguments

- `x`: data

Value

expit of x

Examples

```r
x <- .5
expit(x)
```

getAdjusted

Adjust direct estimates and their associated variances

Description

Adjust direct estimates and their associated variances

Usage

```r
getAdjusted(
  data,
  ratio,
  time = "years",
  region = "region",
  est = "mean",
  logit = "logit.est",
  logit.var = "var.est",
  logit.prec = "logit.prec",
  logit.lower = "lower",
  logit.upper = "upper",
  prob.lower = NULL,
)```

```r
data,
ratio,
time = "years",
region = "region",
est = "mean",
logit = "logit.est",
logit.var = "var.est",
logit.prec = "logit.prec",
logit.lower = "lower",
logit.upper = "upper",
prob.lower = NULL,
```
getAdjusted

  prob.upper = NULL,
  adj = "ratio",
  verbose = FALSE,
  lower = NULL,
  upper = NULL
)

Arguments

data data frame of the adjusted estimates and the associated uncertainties, see the arguments below for specific columns.
ratio the ratio of unadjusted mortality rates to the true mortality rates. It can be either a data frame with the following three columns (region, time, and adj) if adjustment factor differ by region; or a data frame with the following two columns (time and adj) if adjustment factor only varies over time. The column names specifying region, time and ratio, and adjustment are specified by the arguments in the function call.
time the column name for time in the data and adjustment ratio.
region the column name for region in the data and adjustment ratio.
est the column name for unadjusted mortality rates in the data
logit the column name for the logit of the unadjusted mortality rates in the data
logit.var the column name for the variance of the logit of the unadjusted mortality rates in the data
logit.prec the column name for the precision of the logit of the unadjusted mortality rates in the data
logit.lower the column name for the 95% lower bound of the logit of the unadjusted mortality rates in the data
logit.upper the column name for the 95% lower bound of the logit of the unadjusted mortality rates in the data
prob.lower the column name for the 95% lower bound of the unadjusted mortality rates in the data. If this is provided instead of logit.lower, the logit scale lower bound will be created.
prob.upper the column name for the 95% lower bound of the unadjusted mortality rates in the data. If this is provided instead of logit.upper, the logit scale upper bound will be created.
adj the column name for the adjustment ratio
verbose logical indicator for whether to print out unadjusted row index
lower previous argument name for prob.lower. Will be removed in the next update
upper previous argument name for prob.upper. Will be removed in the next update

Value

adjusted dataset of the same columns.
Author(s)

Zehang Richard Li

Examples

```r
Not run:
years <- levels(DemoData[[1]]$time)

obtain direct estimates
data <- getDirectList(births = DemoData,
years = years,
regionVar = "region", timeVar = "time",
clusterVar = "~clustid+id",
ageVar = "age", weightsVar = "weights",
geo.recode = NULL)
obtain direct estimates
data_multi <- getDirectList(births = DemoData, years = years,
regionVar = "region", timeVar = "time", clusterVar = "~clustid+id",
ageVar = "age", weightsVar = "weights", geo.recode = NULL)
data <- aggregateSurvey(data_multi)

randomly simulate adjustment factor
adj <- expand.grid(region = unique(data$region), years = years)
adj$ratio <- runif(dim(adj)[1], min = 0.5, max = 0.8)
data.adj <- getAdjusted(data = data, ratio = adj)

End(Not run)
```

getAmat

Extract adjacency matrix from the map

Description

Extract adjacency matrix from the map

Usage

```r
getAmat(geo, names)
```

Arguments

- `geo` SpatialPolygonsDataFrame of the map
- `names` character vector of region ids to be added to the neighbours list

Value

Spatial adjacency matrix.
getBirths

Author(s)
Zehang Richard Li

Examples

data(DemoMap)
mat <- getAmat(geo = DemoMap$geo, names = DemoMap$geo$REGNAME)
mat
DemoMap$Amat

getBirths
Reformat full birth records into person-month format

Description
Reformat full birth records into person-month format

Usage

getBirths(
  filepath = NULL,
  data = NULL,
  surveyyear = NA,
  variables = c("caseid", "v001", "v002", "v004", "v005", "v021", "v022", "v023",
               "v024", "v025", "v139", "bidx"),
  strata = c("v024", "v025"),
  dob = "b3",
  alive = "b5",
  age = "b7",
  age.truncate = 24,
  date.interview = "v008",
  month.cut = c(1, 12, 24, 36, 48, 60),
  year.cut = seq(1980, 2020, by = 5),
  min.last.period = 0,
  cmc.adjust = 0,
  compact = FALSE,
  compact.by = c("v001", "v024", "v025", "v005")
)

Arguments
filepath file path of raw .dta file from DHS. Only used when data frame is not provided
in the function call.
data data frame of a DHS survey
surveyyear year of survey. Observations after this year will be excluded from the analysis.
variables vector of variables to be used in obtaining the person-month files. The variables correspond the the DHS recode manual VI. For early DHS data, the variable names may need to be changed.

strata vector of variable names used for strata. If a single variable is specified, then that variable will be used as strata indicator. If multiple variables are specified, the interaction of these variables will be used as strata indicator.

dob variable name for the date of birth.

alive variable name for the indicator of whether child was alive or dead at the time of interview.

age variable name for the age at death of the child in completed months.

age.truncate the smallest age in months where only full years are reported. The default value is 24, which corresponds to the DHS practice of recording only age in full years for children over 2 years old. That is, for children with age starting from 24 months old, we assume the age variable reported in multiples of 12 are truncated from its true value. For example, children between age 24 to 35 months are all recorded as 24. To account for the truncation of age, 5 months are added to all ages recorded in multiples of 12 starting from 24. To avoid this adjustment, set this argument to NA.

date.interview variable name for the date of interview.

month.cut the cutoff of each bins of age group in the unit of months. Default values are 1, 12, 24, 36, 48, and 60, representing the age groups (0, 1), [1, 12), [12, 24), ..., [48, 60).

year.cut The cutoff of each bins of time periods, including both boundaries. Default values are 1980, 1985, ..., 2020, representing the time periods 80-84, 85-89, ..., 15-19. Notice that if each bin contains one year, the last year in the output is max(year.cut)-1. For example, if year.cut = 1980:2020, the last year in the output is 2019.

min.last.period The cutoff for how many years the last period must contain in order to be counted in the output. For example, if the last period is 2015-2019 and min.last.period = 3, person-months for the last period will only be returned if survey contains observations at least in 2017. This argument avoids the situation that estimates for the last period being based on only a small number of initial years, if applicable. Default to be 0.

cmc.adjust number of months to add to the recorded month in the dataset. Some DHS surveys does not use Gregorian calendar (the calendar used in most of the world). For example, the Ethiopian calendar is 92 months behind the Gregorian calendar in general. Then we can set cmc.adjust to 92, which adds 92 months to all dates in the dataset, effectively transforming the Ethiopian calendar to the Gregorian calendar.

compact logical indicator of whether the compact format is returned. In the compact output, person months are aggregated by cluster, age, and time. Total number of person months and deaths in each group are returned instead of the raw person-months.

compact.by vector of variables to summarize the compact form by.
Value

This function returns a new data frame where each row indicate a person-month, with the additional variables specified in the function argument.

Author(s)

Zehang Richard Li, Bryan Martin, Laina Mercer

References


Examples

```r
Not run:
my_fp <- "~/myExampleFilepath/surveyData.DTA"
DemoData <- getBirths(filepath = my_fp, surveyyear = 2015)
End(Not run)
```

Arguments

- `data`: dataset in person-month format
- `variables`: a character vector of the variables to aggregate
- `by`: a character vector of columns that specifies which groups to aggregate by.
- `ignore`: list of conditions not to impute 0. If left unspecified, any group levels not in the data will be imputed to have 0 counts.
- `addtotal`: logical indicator of whether to add a column of group total counts.
- `drop`: logical indicator of whether to drop all rows with total = 0.
Value
data.frame of the aggregated counts.

Author(s)
Zehang Richard Li

Examples

# a toy dataset with 4 time periods but one missing in data
timelist <- factor(1:4)
data = data.frame(died = c(0,0,0,1,0,0),
area = c(rep(c("A", "B"), 3), "A"),
time = timelist[1:1,2,3,3,3,3])
data
# without ignore argument, all levels will be imputed
getCounts(data, variables = "died", by = c("area", "time"))

# ignoring time = 4, the ignored level will not be imputed (but still in the output)
getCounts(data, variables = "died", by = c("area", "time"),
ignore = list("time"=c(4)))

getDiag

Extract posterior summaries of random effects

Description
Extract posterior summaries of random effects

Usage
getDiag(
inla_mod,
field = c("space", "time", "spacetime")[1],
CI = 0.95,
draws = NULL,
...)

Arguments

inla_mod output from smoothDirect
field which random effects to plot. It can be one of the following: space, time, and spacetime.
getDiag

CI
---
Desired level of credible intervals

draws
---
Posterior samples drawn from the fitted model. This argument allows the previously sampled draws (by setting save.draws to be TRUE) be used in new aggregation tasks.

... Unused arguments, for users with fitted object from the package before v1.0.0, arguments including Amat, year_label, and year_range can still be specified manually.

Value
---
List of diagnostic plots

Author(s)
---
Zehang Richard Li

Examples
---
## Not run:
data(DemoMap)
years <- levels(DemoData[[1]]$time)

# obtain direct estimates
data <- getDirectList(births = DemoData, 
years = years, 
regionVar = "region", timeVar = "time", 
clusterVar = "~clustid+id", 
ageVar = "age", weightsVar = "weights", 
geo.recode = NULL)

# obtain direct estimates
data_multi <- getDirectList(births = DemoData, years = years, 
regionVar = "region", timeVar = "time", clusterVar = "~clustid+id", 
ageVar = "age", weightsVar = "weights", geo.recode = NULL)
data <- aggregateSurvey(data_multi)

# national model
years.all <- c(years, "15-19")
fit1 <- smoothDirect(data = data, geo = DemoMap$geo, Amat = DemoMap$Amat, 
year_label = years.all, year_range = c(1985, 2019), 
rw = 2, is.yearly=FALSE, m = 5)
random.time <- getDiag(fit1, field = "time")
random.space <- getDiag(fit1, field = "space")
random.spacetime <- getDiag(fit1, field = "spacetime")

## End(Not run)
getDirect

Obtain the Horvitz-Thompson direct estimates and standard errors using delta method for a single survey.

Description

Obtain the Horvitz-Thompson direct estimates and standard errors using delta method for a single survey.

Usage

getDirect(
births,
years,
regionVar = "region",
timeVar = "time",
clusterVar = "~v001+v002",
ageVar = "age",
weightsVar = "v005",
Ntrials = NULL,
geo.recode = NULL,
national.only = FALSE
)

Arguments

births A matrix child-month data from getBirths
years String vector of the year intervals used
regionVar Variable name for region in the input births data.
timeVar Variable name for the time period indicator in the input births data.
clusterVar Variable name for cluster, typically '~v001 + v002'
ageVar Variable name for age group. This variable need to be in the form of "a-b" where a and b are both ages in months. For example, "1-11" means age between 1 and 11 months, including both end points. An exception is age less than one month can be represented by "0" or "0-0".
weightsVar Variable name for sampling weights, typically 'v005'
Ntrials Variable for the total number of person-months if the input data (births) is in the compact form.
geo.recode The recode matrix to be used if region name is not consistent across different surveys. See ChangeRegion.
national.only Logical indicator to obtain only the national estimates
getDirectList

Value

a matrix of period-region summary of the Horvitz-Thompson direct estimates by region and time period specified in the argument, the standard errors using delta method for a single survey, the 95% confidence interval, and the logit of the estimates.

Author(s)

Zehang Richard Li, Bryan Martin, Laina Mercer

References


See Also

getDirectList

Examples

## Not run:

data(DemoData)
years <- c("85-89", "90-94", "95-99", "00-04", "05-09", "10-14")
mean <- getDirect(births = DemoData[[1]], years = years,
regionVar = "region", timeVar = "time", clusterVar = "~clustid+id",
ageVar = "age", weightsVar = "weights", geo.recode = NULL)
## End(Not run)
Usage

getDirectList(
  births,
  years,
  regionVar = "region",
  timeVar = "time",
  clusterVar = "~v001+v002",
  ageVar = "age",
  weightsVar = "v005",
  Ntrials = NULL,
  geo.recode = NULL,
  national.only = FALSE
)

Arguments

  births  A list of child-month data from multiple surveys from getBirths. The name of the list is used as the identifier in the output.
  years   String vector of the year intervals used
  regionVar  Variable name for region, typically 'v024', for older surveys might be 'v101'
  timeVar  Variable name for the time period indicator in the input births data.
  clusterVar  Variable name for the IDs in the second-stage cluster sampling, typically '~v001 + v002', i.e., the cluster number and household number. When no cluster sampling design exists, this variable usually is the household ID.
  ageVar  Variable name for age group. This variable need to be in the form of "a-b" where a and b are both ages in months. For example, "1-11" means age between 1 and 11 months, including both end points. An exception is age less than one month can be represented by "0" or "0-0".
  weightsVar  Variable name for sampling weights, typically 'v005'
  Ntrials  Variable for the total number of person-months if the input data (births) is in the compact form.
  geo.recode  The recode matrix to be used if region name is not consistent across different surveys. See ChangeRegion.
  national.only  Logical indicator to obtain only the national estimates

Value

This is the extension to the getDirect function that returns estimates from multiple surveys. Additional columns in the output (survey and surveyYears) specify the estimates from different surveys.

Author(s)

Zehang Richard Li, Bryan Martin, Laina Mercer
getSmoothed

References


See Also

gDirect

Examples

```r
Not run:
data(DemoData)
years <- c("85-89", "90-94", "95-99", "00-04", "05-09", "10-14")
mean <- getDirectList(births = DemoData, years = years,
regionVar = "region", timeVar = "time", clusterVar = "-clustid+id",
ageVar = "age", weightsVar = "weights", geo.recode = NULL)

End(Not run)
```

getSmoothed

Extract smoothed estimates.

Description

Extract smoothed estimates.

Usage

gSmoothed(
  inla_mod,
  nsim = 1000,
  weight.strata = NULL,
  weight.frame = NULL,
  verbose = FALSE,
  mc = 0,
  include_time_unstruct = FALSE,
  CI = 0.95,
  draws = NULL,
  save.draws = FALSE,
  include_subnational = TRUE,
  ...
)
```
Arguments

- **inla_mod**: output from `smoothDirect` or `smoothCluster`
- **nsim**: number of simulations, only applicable for the cluster-level model.
- **weight.strata**: a data frame with two columns specifying time and region, followed by columns specifying proportion of each strata for each region. This argument specifies the weights for strata-specific estimates on the probability scale.
- **weight.frame**: a data frame with three columns, years, region, and the weight of each frame for the corresponding time period and region. This argument specifies the weights for frame-specific estimates on the logit scale. Notice this is different from weight.strata argument.
- **verbose**: logical indicator whether to print progress messages from `inla.posterior.sample`.
- **mc**: number of monte carlo draws to approximate the marginal prevalence/hazards for binomial model. If `mc = 0`, analytical approximation is used. The analytical approximation is invalid for hazard modeling with more than one age groups.
- **include_time_unstruct**: Indicator whether to include the temporal unstructured effects (i.e., shocks) in the smoothed estimates from cluster-level model. The argument only applies to the cluster-level models (from `smoothCluster`). Default is FALSE which excludes all unstructured temporal components. If set to TRUE all the unstructured temporal random effects will be included. Alternatively, if this is specified as a vector of subset of year labels (as in the year_label argument), only the unstructured terms in the corresponding time periods will be added to the prediction.
- **CI**: Desired level of credible intervals
- **draws**: Posterior samples drawn from the fitted model. This argument allows the previously sampled draws (by setting save.draws to be TRUE) be used in new aggregation tasks.
- **save.draws**: Logical indicator whether the raw posterior draws will be saved. Saved draws can be used to accelerate aggregations with different weights.
- **include_subnational**: logical indicator whether to include the spatial and space-time interaction components in the smoothed estimates. If set to FALSE, only the main temporal trends are returned.
- **...**: Unused arguments, for users with fitted object from the package before v1.0.0, arguments including Amat, year_label, and year_range can still be specified manually.

Value

A data frame or a list of data frames of S3 class SUMMERproj, which contains the smoothed estimates.

Author(s)

Zehang Richard Li
hatchPlot

Plot maps with uncertainty hatching.

Description

This function visualizes the map with different variables. The input data frame can be either the long or wide format.

See Also

plot.SUMMERproj

Examples

```r
## Not run:
years <- levels(DemoData[[1]]$time)

# obtain direct estimates
data <- getDirectList(births = DemoData,
years = years,
regionVar = "region", timeVar = "time",
clusterVar = "-clustid+id",
ageVar = "age", weightsVar = "weights",
geo.recode = NULL)

# obtain direct estimates
data_multi <- getDirectList(births = DemoData, years = years,
regionVar = "region", timeVar = "time", clusterVar = "-clustid+id",
ageVar = "age", weightsVar = "weights", geo.recode = NULL)
data <- aggregateSurvey(data_multi)

# national model
years.all <- c(years, "15-19")
fit1 <- smoothDirect(data = data, Amat = NULL,
year_label = years.all, year_range = c(1985, 2019),
rw = 2, is.yearly=FALSE, m = 5)
out1 <- getSmoothed(fit1)
plot(out1, is.subnational=FALSE)

# subnational model
fit2 <- smoothDirect(data = data, Amat = mat,
year_label = years.all, year_range = c(1985, 2019),
rw = 2, is.yearly=TRUE, m = 5, type.st = 4)
out2 <- getSmoothed(fit2)
plot(out2, is.yearly=TRUE, is.subnational=TRUE)
```

End(Not run)
Usage

hatchPlot(
 data,
 variables,
 values = NULL,
 labels = NULL,
 geo,
 by.data,
 by.geo,
 is.long = FALSE,
 lower,
 upper,
 lim = NULL,
 lim.CI = NULL,
 breaks.CI = NULL,
 ncol = 4,
 hatch = NULL,
 border = NULL,
 size = 1,
 legend.label = NULL,
 per1000 = FALSE,
 direction = 1,
 ...
)

Arguments

data a data frame with variables to be plotted
variables vector of variables to be plotted. If long format of data is used, only one variable can be selected
values the column corresponding to the values to be plotted, only used when long format of data is used
labels vector of labels to use for each variable, only used when wide format of data is used
geo SpatialPolygonsDataFrame object for the map
by.data column name specifying region names in the data
by.geo variable name specifying region names in the data
is.long logical indicator of whether the data is in the long format, default to FALSE
lower column name of the lower bound of the CI
upper column name of the upper bound of the CI
lim fixed range of values for the variables to plot
lim.CI fixed range of the CI widths to plot
breaks.CI a vector of numerical values that decides the breaks in the CI widths to be shown
ncol number of columns for the output tabs
hatchPlot

hatch color of the hatching lines.
border color of the polygon borders.
size line width of the polygon borders.
legend.label Label for the color legend.
per1000 logical indicator to plot mortality rates as rates per 1,000 live births. Note that the added comparison data should always be in the probability scale.
direction Direction of the color scheme. It can be either 1 (smaller values are darker) or -1 (higher values are darker). Default is set to 1.
... unused.

Author(s)

Zehang Richard Li, Katie Wilson

Examples

```r
## Not run:
years <- levels(DemoData[[1]]$time)

# obtain direct estimates
data <- getDirectList(births = DemoData, years = years,
regionVar = "region", timeVar = "time",
clusterVar = "~clustid+id",
ageVar = "age", weightsVar = "weights",
geo.recode = NULL)
# obtain direct estimates
data_multi <- getDirectList(births = DemoData, years = years,
regionVar = "region", timeVar = "time", clusterVar = "~clustid+id",
ageVar = "age", weightsVar = "weights", geo.recode = NULL)
data <- aggregateSurvey(data_multi)

fit2 <- smoothDirect(data = data, geo = geo, Amat = mat,
year_label = years.all, year_range = c(1985, 2019),
rw = 2, is.yearly=TRUE, m = 5, type.st = 4)
out2 <- getSmoothed(fit2)

plot(out2, is.yearly=TRUE, is.subnational=TRUE)

hatchPlot(data = subset(out2, is.yearly==FALSE), geo = geo,
variables=c("years"), values = c("median"),
by.data = "region", by.geo = "REGNAME",
lower = "lower", upper = "upper", is.long=TRUE)

## End(Not run)
```
iid.new

New random IID models for m-year to period random effects

Description

New random IID models for m-year to period random effects

Usage

```r
iid.new(
  cmd = c("graph", "Q", "mu", "initial", "log.norm.const", "log.prior", "quit"),
  theta = NULL
)
```

Arguments

- **cmd**
 - list of model components
- **theta**
 - log precision

iid.new.pc

New random IID models for m-year to period random effects

Description

New random IID models for m-year to period random effects

Usage

```r
iid.new.pc(
  cmd = c("graph", "Q", "mu", "initial", "log.norm.const", "log.prior", "quit"),
  theta = NULL
)
```

Arguments

- **cmd**
 - list of model components
- **theta**
 - log precision
KenData

Auxiliary data for Kenya 2014 DHS.

Description

The list contains several data frames.

Usage

data(KenData)

Format

An object of class list of length 4.

Details

- HIV2014, a data frame with three columns: years (in five year periods), region (8 Admin-1 region groups), and the estimated bias of the reported U5MR due to HIV for each 5 year period from 1990-1994 to 2010-2014. The bias is represented as the ratio of the reported U5MR to the true U5MR.
- HIV2014.yearly, a data frame with three columns: years (in one year interval), region (8 Admin-1 region groups), and the estimated bias of the reported U5MR due to HIV for each year from 1980 to 2014. The bias is represented as the ratio of the reported U5MR to the true U5MR.

References

KingCounty

Map of King County

Description

Shapefiles are King County in the Washington States.

Usage

KingCounty
Format

An object of class `SpatialPolygonsDataFrame` with 48 rows and 9 columns.

logit

Logit transformation

Description

Logit transformation

Usage

`logit(x)`

Arguments

- `x` data

Value

logit of x

Examples

```r
x <- .5
logit(x)
```

MalawiData

Description

The list contains several data frames.

Usage

`data(MalawiData)`

Format

An object of class `list` of length 4.
Details

- HIV, a data frame with three columns: years (in five year periods), survey, and the estimated bias of the reported U5MR due to HIV for each 5 year period. The bias is represented as the ratio of the reported U5MR to the true U5MR.
- HIV.yearly, a data frame with three columns: years (in one year interval), survey, and the estimated bias of the reported U5MR due to HIV for each year. The bias is represented as the ratio of the reported U5MR to the true U5MR.

References

MalawiMap

Malawi Admin-2 map

Description

SpatialPolygonsDataFrame objects that reflect the Admin 2 regions in Malawi, including the Likoma island. The Admin 2 region names are in the ADM2_EN field.

Usage

data(MalawiMap)

Format

An object of class SpatialPolygonsDataFrame with 28 rows and 14 columns.

mapPlot

Plot region-level variables on a map

Description

This function visualizes the map with different variables. The input data frame can be either the long or wide format.
mapPlot

Usage

mapPlot(
 data = NULL,
 variables,
 values = NULL,
 labels = NULL,
 geo,
 by.data,
 by.geo,
 is.long = FALSE,
 size = 0.5,
 removetab = FALSE,
 border = "gray20",
 ncol = NULL,
 ylim = NULL,
 legend.label = NULL,
 per1000 = FALSE,
 clean = TRUE,
 size.label = 2,
 add.adj = FALSE,
 color.adj = "red",
 alpha.adj = 0.85,
 direction = 1
)

Arguments

data a data frame with variables to be plotted. When it is null, a map is produced.
variables vector of variables to be plotted. If long format of data is used, only one variable can be selected.
values the column corresponding to the values to be plotted, only used when long format of data is used.
labels vector of labels to use for each variable, only used when wide format of data is used.
geo SpatialPolygonsDataFrame object for the map.
by.data column name specifying region names in the data.
by.geo variable name specifying region names in the data.
is.long logical indicator of whether the data is in the long format, default to FALSE.
size size of the border.
removetab logical indicator to not show the tab label, only applicable when only one tab is present.
border color of the border.
ncol number of columns for the output tabs.
ylim range of the values to be plotted.
mapPoints

Description

Map GPS points to polygon regions

legend.label
Label for the color legend.

per1000
Logical indicator to plot mortality rates as rates per 1,000 live births. Note that the added comparison data should always be in the probability scale.

clean
Remove all coordinates for a cleaner layout, default to TRUE.

size.label
Size of the label of the regions.

add.adj
Logical indicator to add edges between connected regions.

color.adj
Color of the adjacency matrix edges.

alpha.adj
Alpha level (transparency) of the adjacency matrix edges.

direction
Direction of the color scheme. It can be either 1 (smaller values are darker) or -1 (higher values are darker). Default is set to 1.

Author(s)

Zehang Richard Li

Examples

```r
## Not run:
data(DemoMap)
# Plotting data in the long format
dat <- data.frame(region = rep(c("central", "eastern", "northern", "western"), 3),
                   year = rep(c(1980, 1990, 2000), each = 4),
                   values = stats::rnorm(12))
utils::head(dat)
mapPlot(dat, variables = "year", values = "values",
        by.data = "region", geo = DemoMap$geo,
        by.geo = "NAME_final", is.long = TRUE)
dat <- data.frame(region = c("central", "eastern", "northern", "western"),
                   Year1 = stats::rnorm(4), Year2 = stats::rnorm(4),
                   Year3 = stats::rnorm(4))
utils::head(dat)
mapPlot(dat, variables = c("Year1", "Year2", "Year3"),
        labels = c(1980, 1990, 2000),
        by.data = "region", geo = DemoMap$geo,
        by.geo = "NAME_final", is.long = FALSE)
## End(Not run)
```

mapPoints
Map GPS points to polygon regions
Usage

mapPoints(data, geo, long, lat, names)

Arguments

data point data with two columns of GPS locations.
geo SpatialPolygonsDataFrame of the map
long column name for longitudinal coordinate in the data
lat column name for latitude coordinate in the data
names character vector of region ids to be added to the neighbours list

Value

Spatial adjacency matrix.

Author(s)

Zehang Richard Li

Examples

data(DemoMap)
dat <- data.frame(ID = c(1,2,3), lon = c(32.2, 33.7, 33), lat = c(0.1, 0.9, 2.8))
dat2 <- mapPoints(dat, DemoMap$geo, long = "lon", lat = "lat", names = "REGNAME")
dat2

plot.SUMMERproj Plot projection output.

Description

Plot projection output.

Usage

S3 method for class 'SUMMERproj'
plot(
 x,
 year_label = c("85-89", "90-94", "95-99", "00-04", "05-09", "10-14", "15-19"),
 is.subnational = TRUE,
 proj_year = 2015,
 data.add = NULL,
 option.add = list(point = NULL, lower = NULL, upper = NULL, by = NULL),
 color.add = "black",
)
label.add = NULL,
 dodge.width = 1,
 plot.CI = NULL,
 per1000 = FALSE,
 color.CI = NULL,
 alpha.CI = 0.5,
 ...
)

Arguments

x output from getSmoothed
year_label labels for the periods
year_med labels for the middle years in each period, only used when both yearly and pe-
period estimates are plotted. In that case, year_med specifies where each period
estimates are aligned.
is.subnational logical indicator of whether the data contains subnational estimates
proj_year the first year where projections are made, i.e., where no data are available.
data.add data frame for the Comparisons data points to add to the graph. This can be,
for example, the raw direct estimates. This data frame is merged to the projec-
tions by column ‘region’ and ‘years’. Except for these two columns, this dataset
should not have Comparisons columns with names overlapping the getSmoothed
output.
option.add list of options specifying the variable names for the points to plot, lower and
upper bounds, and the grouping variable. This is intended to be used to add
Comparisons estimates on the same plot as the smoothed estimates. See exam-
amples for details.
 color.add the color of the Comparisons data points to plot.
 label.add the label of the Comparisons data points in the legend.
 dodge.width the amount to add to data points at the same year to avoid overlap. Default to be
1.
 plot.CI logical indicator of whether to plot the error bars.
 per1000 logical indicator to plot mortality rates as rates per 1,000 live births. Note that
the added comparison data should always be in the probability scale.
 color.CI the color of the error bars of the credible interval.
 alpha.CI the alpha (transparency) of the error bars of the credible interval.

Details

Examples of some arguments:

- year_labelstring of year labels, e.g., c("85-89","90-94","95-99","00-04","05-09","10-14","15-19")
or c(1985:2019)
- proj_yearthe year projection starts, e.g., 2015
Author(s)
Zehang Richard Li

See Also
getSmoothed

Examples

```r
## Not run:
years <- levels(DemoData[[1]]$time)

# obtain direct estimates
data <- getDirectList(births = DemoData, 
  years = years, 
  regionVar = "region", timeVar = "time", 
  clusterVar = "-clustid+id", 
  ageVar = "age", weightsVar = "weights", 
  geo.recode = NULL)

# obtain direct estimates
data_multi <- getDirectList(births = DemoData, years = years, 
  regionVar = "region", timeVar = "time", clusterVar = "-clustid+id", 
  ageVar = "age", weightsVar = "weights", geo.recode = NULL)
data <- aggregateSurvey(data_multi)

# national model
years.all <- c(years, "15-19")
fit1 <- smoothDirect(data = data, geo = NULL, Amat = NULL, 
  year_label = years.all, year_range = c(1985, 2019), 
  rw = 2, is.yearly=FALSE, m = 5)
out1 <- getSmoothed(fit1)
plot(out1, is.subnational=FALSE)

# subnational model
fit2 <- smoothDirect(data = data, geo = geo, Amat = mat, 
  year_label = years.all, year_range = c(1985, 2019), 
  rw = 2, is.yearly=TRUE, m = 5, type.st = 4)
out2 <- getSmoothed(fit2)
plot(out2, is.yearly=TRUE, is.subnational=TRUE)

## End(Not run)
```

ridgePlot

Calculate and plot posterior densities of the projected estimates
Description

The function `ridgePlot` replaces the previous function name `getSmoothedDensity` (before version 1.0.0).

Usage

```r
ridgePlot(
  x = NULL,
  nsim = 1000,
  draws = NULL,
  Amat = NULL,
  year_plot = NULL,
  strata_plot = NULL,
  by.year = TRUE,
  ncol = 4,
  scale = 2,
  per1000 = FALSE,
  order = 0,
  direction = 1,
  results = NULL,
  ...
)
```

```r
getSmoothedDensity(
  x = NULL,
  nsim = 1000,
  draws = NULL,
  Amat = NULL,
  year_plot = NULL,
  strata_plot = NULL,
  by.year = TRUE,
  ncol = 4,
  scale = 2,
  per1000 = FALSE,
  order = 0,
  direction = 1,
  results = NULL,
  ...
)
```

Arguments

- **x**
 output from `smoothDirect` for the smoothed direct estimates, or `smoothCluster` for the cluster-level estimates.

- **nsim**
 number of posterior draws to take. Only used for cluster-level models when `draws` is NULL. Otherwise the posterior draws in `draws` will be used instead without resampling.
draws Output of `getSmoothed` with `save.draws` set to TRUE. This argument allows the previously sampled draws (by setting `save.draws` to be TRUE) be used in new aggregation tasks. This argument is only used for cluster-level models.

Amat adjacency matrix

year_plot A vector indicate which years to plot

strata_plot Name of the strata to plot. If not specified, the overall is plotted.

by.year logical indicator for whether the output uses years as facets.

ncol number of columns in the output figure.

scale numerical value controlling the height of the density plots.

per1000 logical indicator to multiply results by 1000.

order order of regions when `by.year` is set to TRUE. Negative values indicate regions are ordered from high to low posterior medians from top to bottom. Positive values indicate from low to high. 0 indicate alphabetic orders.

direction Direction of the color scheme. It can be either 1 (smaller values are darker) or -1 (higher values are darker). Default is set to 1.

results output from `ridgePlot`. This argument can be specified to avoid calculating densities again when only the visualization changes.

... additional configurations passed to `inla.posterior.sample`.

Value a data frame of the calculated densities and a ggplot figure.

Author(s) Zehang Richard Li

See Also `plot.SUMMERproj`

Examples

```r
# Not run:
years <- levels(DemoData[[1]]$time)

data <- getDirectList(births = DemoData,
years = years,
regionVar = "region", timeVar = "time",
clusterVar = "~clustid+id",
ageVar = "age", weightsVar = "weights",
geo.recode = NULL)
# obtain direct estimates
data_multi <- getDirectList(births = DemoData, years = years,
regionVar = "region", timeVar = "time", clusterVar = "~clustid+id",
ageVar = "age", weightsVar = "weights", geo.recode = NULL)
data <- aggregateSurvey(data_multi)
```
national model
years.all <- c(years, "15-19")
fit1 <- smoothDirect(data = data, geo = NULL, Amat = NULL,
 year_label = years.all, year_range = c(1985, 2019),
 rw = 2, is.yearly=FALSE, m = 5)
Plot marginal posterior densities over time
density <- ridgePlot(fit1, year_plot = years.all, ncol = 4, by.year = FALSE)
density$g

subnational model
fit2 <- smoothDirect(data = data, geo = geo, Amat = mat,
 year_label = years.all, year_range = c(1985, 2019),
 rw = 2, is.yearly=TRUE, m = 5, type.st = 1)
Plot marginal posterior densities over time (regions are ordered alphabetically)
density <- ridgePlot(fit2, Amat = mat, year_plot = years.all, ncol = 4)
density$g
Re-order the regions
density <- ridgePlot(fit2, Amat = mat, year_plot = years.all, ncol = 4, per1000 = TRUE, order = -1)
density$g

Show each region (instead of each year) in a panel
Instead of recalculate the posteriors, we can use previously calculated densities as input
density <- ridgePlot(results = density, year_plot = years.all, ncol = 4, by.year=FALSE, per1000 = TRUE)
density$g
Show more years
density <- ridgePlot(results = density, year_plot = c(1990:2019), ncol = 4, by.year=FALSE, per1000 = TRUE)
density$g

End(Not run)

rst
Simulate spatial and temporal random effects

Description

This function simulates spatial and temporal random effects with mean zero. The method is described in Algorithm 3.1 of Rue & Held 2015.
Usage

```r
rst(
  n = 1,
  type = c("s", "t", "st")[1],
  type.s = "ICAR",
  type.t = c("RW1", "RW2")[2],
  Amat = NULL,
  n.t = NULL,
  scale.model = TRUE
)
```

Arguments

- `n`: sample size
- `type`: type of random effects: temporal (t), spatial (s), or spatial-temporal (st)
- `type.s`: type of spatial random effect, currently only ICAR is available
- `type.t`: type of temporal random effect, currently only RW1 and RW2 are available
- `Amat`: adjacency matrix for the spatial regions
- `n.t`: number of time points for the temporal random effect
- `scale.model`: logical indicator of whether to scale the random effects to have unit generalized variance. See Sørbye 2013 for more details

Value

A matrix (for spatial or temporal) or a three-dimensional array (for spatial-temporal) of the random effects.

Author(s)

Zehang Richard Li

References

Examples

```r
## Not run:
data(DemoMap)
## Spatial random effects
out <- rst(n=10000, type = "s", Amat = DemoMap$Amat)
# To verify the mean under the conditional specification
mean(out[,1] - apply(out[,c(2,3,4)], 1, mean))
mean(out[,2] - apply(out[,c(1,3)], 1, mean))
mean(out[,3] - apply(out[,c(1,2,4)], 1, mean))
mean(out[,4] - apply(out[,c(1,3)], 1, mean))
```
Temporal random effects (RW1)
out <- rst(n=1, type = "t", type.t = "RW1", n.t = 200, scale.model = FALSE)
par(mfrow = c(1,2))
plot(1:dim(out)[2], out, col = 1, type = "l", xlab = "Time", ylab = "Random effects")
verify the first order difference is normally distributed
first_diff <- diff(as.numeric(out[1,]))
qqnorm(first_diff)
abline(c(0,1))

Temporal random effects (RW2)
out <- rst(n=1, type = "t", type.t = "RW2", n.t = 200, scale.model = FALSE)
par(mfrow = c(1,2))
plot(1:dim(out)[2], out, col = 1, type = "l", xlab = "Time", ylab = "Random effects")
verify the second order difference is normally distributed
first_diff <- diff(as.numeric(out[1,]))
second_diff <- diff(first_diff)
qqnorm(second_diff)
abline(c(0,1))

Spatial-temporal random effects
out <- rst(n=1, type = "st", type.t = "RW2", Amat = DemoMap$Amat, n.t = 50)
dimnames(out)
par(mfrow = c(1,1))
plot(1:dim(out)[3], out[1,1,], col = 1, type = "l", ylim = range(out), xlab = "Time", ylab = "Random effects")
for(i in 2:4) lines(1:dim(out)[3], out[1,i,], col = i)
legend("bottomright", colnames(DemoMap$Amat), col = c(1:4), lty = rep(1,4))

End(Not run)

Description

New random walk 1 and 2 models for m-year to period random effects

Usage

```r
rw.new(cmd = c("graph", "Q", "mu", "initial", "log.norm.const", "log.prior", "quit"), theta = NULL)
```

Arguments

- **cmd** list of model components
- **theta** log precision
rw.new.pc

New random walk 1 and 2 models for m-year to period random effects

Description

New random walk 1 and 2 models for m-year to period random effects

Usage

```r
rw.new.pc(
  cmd = c("graph", "Q", "mu", "initial", "log.norm.const", "log.prior", "quit"),
  theta = NULL
)
```

Arguments

- `cmd` list of model components
- `theta` log precision

simhyper

Simulate hyperpriors from an GMRF

Description

Simulate hyperpriors from an GMRF

Usage

```r
simhyper(
  R = 2,
  nsamp = 1e+05,
  nsamp.check = 5000,
  Amat,
  nperiod = 6,
  only.iid = TRUE
)
```

Arguments

- `R` Desired prior odds ratio. Default to 2, i.e., a 95% prior interval for the residual odds ratios lies in the interval (R, 1/R).
- `nsamp` Sample to simulate for scaling factor
- `nsamp.check` Sample to simulate for checking range
- `Amat` Adjacency matrix of the areas in the data.
- `nperiod` numerical value of how many time periods in the data
- `only.iid` Indicator for whether or not only IID hyperpriors are simulated
Author(s)

Zehang Richard Li, Laina Mercer

References

Examples

```r
## Not run:
data(DemoMap)
mat <- DemoMap$Amat
priors <- simhyper(R = 2, nsamp = 1e+05, nsamp.check = 5000, Amat = mat)

## End(Not run)
```

smoothCluster

Cluster-level space-time smoothing models for mortality rates

Description

The function smoothCluster replace the previous function name fitINLA2 (before version 1.0.0).

Usage

```r
smoothCluster(
  data,
  family = c("betabinomial", "binomial")[[1]],
  age.groups = c("0", "1-11", "12-23", "24-35", "36-47", "48-59"),
  age.n = c(1, 11, 12, 12, 12, 12),
  age.rw.group = c(1, 2, 3, 3, 3, 3),
  time.model = c("rw1", "rw2", "ar1")[[2]],
  st.time.model = NULL,
  Amat,
  bias.adj = NULL,
  bias.adj.by = NULL,
  formula = NULL,
  year_label,
  type.st = 4,
  survey.effect = FALSE,
  common.trend = FALSE,
  strata.time.effect = FALSE,
  hyper = c("pc", "gamma")[[1]],
  pc.u = 1,
  pc.alpha = 0.01,
  pc.u.phi = 0.5,
)```
pc.alpha.phi = 2/3,
pc.u.cor = 0.7,
pc.alpha.cor = 0.9,
pc.st.u = NA,
pc.st.alpha = NA,
pc.st.slope.u = NA,
pc.st.slope.alpha = NA,
overdisp.mean = 0,
overdisp.prec = 0.4,
options = list(config = TRUE),
control.inla = list(strategy = "adaptive", int.strategy = "auto"),
verbose = FALSE,
geo = NULL,
rw = NULL,
ar = NULL,
st.rw = NULL,

fitINLA2(
data,
family = c("betabinomial", "binomial")[1],
age.groups = c("0", "1-11", "12-23", "24-35", "36-47", "48-59"),
age.n = c(1, 11, 12, 12, 12, 12),
age.rw.group = c(1, 2, 3, 3, 3, 3),
time.model = c("rw1", "rw2", "ar1"),
st.time.model = NULL,
Amat,
bias.adj = NULL,
bias.adj.by = NULL,
formula = NULL,
year_label,
type.st = 4,
survey.effect = FALSE,
common.trend = FALSE,
strata.time.effect = FALSE,
hyper = c("pc", "gamma")[1],
pc.u = 1,
pc.alpha = 0.01,
pc.u.phi = 0.5,
pc.alpha.phi = 2/3,
pc.u.cor = 0.7,
pc.alpha.cor = 0.9,
pc.st.u = NA,
pc.st.alpha = NA,
pc.st.slope.u = NA,
pc.st.slope.alpha = NA,
overdisp.mean = 0,
smoothCluster

overdisp.prec = 0.4,
options = list(config = TRUE),
control.inla = list(strategy = "adaptive", int.strategy = "auto"),
verbose = FALSE,
geo = NULL,
rw = NULL,
ar = NULL,
st.rw = NULL,
... )

Arguments

data count data of person-months with the following columns
  • cluster: cluster ID
  • years: time period
  • region: region of the cluster
  • strata: stratum of the cluster
  • age: age group corresponding to the row
  • total: total number of person-month in this age group, stratum, cluster, and period
  • Y: total number of deaths in this age group, stratum, cluster, and period
family family of the model. This can be either binomial (with logistic normal prior), betabinomial.
age.groups a character vector of age groups in increasing order.
age.n number of months in each age groups in the same order.
age.rw.group vector indicating grouping of the ages groups. For example, if each age group is assigned a different random walk component, then set age.rw.group to c(1:length(age.groups)); if all age groups share the same random walk component, then set age.rw.group to a rep(1, length(age.groups)). The default for 6 age groups is c(1,2,3,3,3,3), which assigns a separate random walk to the first two groups and a common random walk for the rest of the age groups. The vector should contain values starting from 1.
time.model Model for the main temporal trend, can be rw1, rw2, or ar1. ar1 is not implemented for yearly model with period data input. Default to be rw2. For ar1 main effect, a linear slope is also added with time scaled to be between -0.5 to 0.5, i.e., the slope coefficient represents the total change between the first year and the last year in the projection period on the logit scale.

st.time.model Temporal component model for the interaction term, can be rw1, rw2, or ar1. ar1 is not implemented for yearly model with period data input. Default to be the same as time.model unless specified otherwise. For ar1 interaction model, region-specific random slopes can be added by specifying pc.st.slope.u and pc.st.slope.alpha.

Amat Adjacency matrix for the regions
bias.adj

the ratio of unadjusted mortality rates or age-group-specific hazards to the true rates or hazards. It needs to be a data frame that can be merged to the outcome, i.e., with the same column names for time periods (for national adjustment), or time periods and region (for subnational adjustment). The column specifying the adjustment ratio should be named “ratio”.

bias.adj.by

vector of the column names specifying how to merge the bias adjustment to the count data. For example, if bias adjustment factor is provided in bias.adj for each region and time, then bias.adj.by should be ‘c("region", "time")’.

formula

INLA formula. See vignette for example of using customized formula.

year_label

string vector of year names

type.st

logical indicator whether to include a survey iid random effect. If this is set to TRUE, there needs to be a column named ‘survey’ in the input data frame. In prediction, this random effect term will be set to 0.

common.trend

logical indicator whether all age groups and/or strata share the same linear trend in the temporal main effect. Only used when the temporal main effect is an AR(1) process.

strata.time.effect

logical indicator whether to include strata specific temporal trends.

hyper

which hyperpriors to use. Default to be using the PC prior ("pc").

pc.u

hyperparameter U for the PC prior on precisions.

pc.alpha

hyperparameter alpha for the PC prior on precisions.

pc.u.phi

hyperparameter U for the PC prior on the mixture probability phi in BYM2 model.

pc.alpha.phi

hyperparameter alpha for the PC prior on the mixture probability phi in BYM2 model.

pc.u.cor

hyperparameter U for the PC prior on the autocorrelation parameter in the AR prior, i.e. Prob(cor > pc.u.cor) = pc.alpha.cor.

pc.alpha.cor

hyperparameter alpha for the PC prior on the autocorrelation parameter in the AR prior.

pc.st.u

hyperparameter U for the PC prior on precisions for the interaction term.

pc.st.alpha

hyperparameter alpha for the PC prior on precisions for the interaction term.

pc.st.slope.u

hyperparameter U for the PC prior on precisions for the area-level random slope. If both pc.st.slope.u and pc.st.slope.alpha are not NA, an area-level random slope with iid prior will be added to the model. The parameterization of the random slope is so that Prob(|beta| > pc.st.slope.u) = pc.st.slope.alpha, where time covariate is rescaled to be -0.5 to 0.5, so that the random slope can be interpreted as the total deviation from the main trend from the first year to the last year to be projected, on the logit scale.

pc.st.slope.alpha

hyperparameter alpha for the PC prior on precisions for the area-level random slope. See above for the parameterization.
overdisp.mean: hyperparameter for the betabinomial likelihood. Mean of the over-dispersion parameter on the logit scale.

overdisp.prec: hyperparameter for the betabinomial likelihood. Precision of the over-dispersion parameter on the logit scale.

options: list of options to be passed to control.compute() in the inla() function.

control.inla: list of options to be passed to control.inla() in the inla() function. Default to the "adaptive" integration strategy.

verbose: logical indicator to print out detailed inla() intermediate steps.

geo: Deprecated. Spatial polygon file, legacy parameter from previous versions of the package.

rw: Deprecated. Take values 0, 1 or 2, indicating the order of random walk. If rw = 0, the autoregressive process is used instead of the random walk in the main trend. See the description of the argument ar for details.

ar: Deprecated. Order of the autoregressive component. If ar is specified to be positive integer, the random walk components will be replaced by AR(p) terms in the interaction part. The main temporal trend remains to be random walk of order rw unless rw = 0.

st.rw: Deprecated. Take values 1 or 2, indicating the order of random walk for the interaction term. If not specified, it will take the same order as the argument rw in the main effect. Notice that this argument is only used if ar is set to 0.

Value

INLA model fit using the provided formula, country summary data, and geographic data

Author(s)

Zehang Richard Li

See Also

generic

Examples

```r
Not run:
library(dplyr)
data(DemoData)

Create dataset of counts
counts.all <- NULL
for(i in 1:length(DemoData)){
 counts <- getCounts(DemoData[[i]][, c("clustid", "time", "age", "died", "region", "strata")],
 variables = 'died', by = c("age", "clustid", "region", "time", "strata")
 counts <- counts %>% mutate(cluster = clustid, years = time, Y=died)
 counts$strata <- gsub(".*\.", "", counts$strata)
}
counts$survey <- names(DemoData)[i]
counts.all <- rbind(counts.all, counts)
}

fit cluster-level model on the periods
periods <- levels(DemoData[[1]]$time)
fit <- smoothCluster(data = counts.all,
 Amat = DemoMap$Amat,
 time.model = "rw2",
 st.time.model = "rw1",
 strata.time.effect = TRUE,
 survey.effect = TRUE,
 family = "betabinomial",
 year_label = c(periods, "15-19"))
est <- getSmoothed(fit, nsim = 1000)
plot(est$stratified, plot.CI=TRUE) + ggplot2::facet_wrap(~strata)

End(Not run)

smoothDirect

Smoothed direct estimates for mortality rates

Description

The function smoothDirect replaces the previous function name fitINLA (before version 1.0.0).

Usage

smoothDirect(
 data,
 Amat,
 X = NULL,
 formula = NULL,
 time.model = c("rw1", "rw2", "ar1")[2],
 st.time.model = NULL,
 year_label,
 year_range = c(1980, 2014),
 is.yearly = TRUE,
 m = 5,
 type.st = 1,
 survey.effect = FALSE,
 hyper = c("pc", "gamma")[1],
 pc.u = 1,
 pc.alpha = 0.01,
 pc.u.phi = 0.5,
 pc.alpha.phi = 2/3,
 pc.u.cor = 0.7,
pc.alpha.cor = 0.9,
pc.st.u = NA,
pc.st.alpha = NA,
options = list(dic = TRUE, mlik = TRUE, cpo = TRUE, openmp.strategy = "default"),
control.inla = list(strategy = "adaptive", int.strategy = "auto"),
verbose = FALSE,
geo = NULL,
rw = NULL,
ar = NULL

fitINLA(
 data,
 Amat,
 X = NULL,
 formula = NULL,
 time.model = c("rw1", "rw2", "ar1")[2],
 st.time.model = NULL,
 year_label,
 year_range = c(1980, 2014),
 is.yearly = TRUE,
 m = 5,
 type.st = 1,
 survey.effect = FALSE,
 hyper = c("pc", "gamma")[1],
 pc.u = 1,
 pc.alpha = 0.01,
 pc.u.phi = 0.5,
 pc.alpha.phi = 2/3,
 pc.u.cor = 0.7,
 pc.alpha.cor = 0.9,
 pc.st.u = NA,
 pc.st.alpha = NA,
options = list(dic = TRUE, mlik = TRUE, cpo = TRUE, openmp.strategy = "default"),
control.inla = list(strategy = "adaptive", int.strategy = "auto"),
verbose = FALSE,
geo = NULL,
rw = NULL,
ar = NULL
)

Arguments

- **data**: Combined dataset
- **Amat**: Adjacency matrix for the regions
- **X**: Covariate matrix. It must contain either a column with name "region", or a column with name "years", or both. The covariates must not have missing values for all regions (if varying in space) and all time periods (if varying in time). The
rest of the columns are treated as covariates in the mean model.

formula
INLA formula. See vignette for example of using customized formula.

time.model
Model for the main temporal trend, can be rw1, rw2, or ar1. ar1 is not implemented for yearly model with period data input. Default to be rw2. For ar1 main effect, a linear slope is also added with time scaled to be between -0.5 to 0.5, i.e., the slope coefficient represents the total change between the first year and the last year in the projection period on the logit scale.

st.time.model
Temporal component model for the interaction term, can be rw1, rw2, or ar1. ar1 is not implemented for yearly model with period data input. Default to be the same as time.model unless specified otherwise. For ar1 interaction model, region-specific random slopes can be added by specifying pc.st.slope.u and pc.st.slope.alpha.

year_label
string vector of year names

year_range
Entire range of the years (inclusive) defined in year_label.

is.yearly
Logical indicator for fitting yearly or period model.

m
Number of years in each period.

type.st
type for space-time interaction

survey.effect
logical indicator whether to include a survey iid random effect. If this is set to TRUE, there needs to be a column named 'survey' in the input data frame. In prediction, this random effect term will be set to 0.

hyper
which hyperpriors to use. Default to be using the PC prior ("pc").

pc.u
hyperparameter U for the PC prior on precisions.

pc.alpha
hyperparameter alpha for the PC prior on precisions.

pc.u.phi
hyperparameter U for the PC prior on the mixture probability phi in BYM2 model.

pc.alpha.phi
hyperparameter alpha for the PC prior on the mixture probability phi in BYM2 model.

pc.u.cor
hyperparameter U for the PC prior on the autocorrelation parameter in the AR prior, i.e. \(\text{Prob}(\text{cor} > \text{pc.u.cor}) = \text{pc.alpha.cor} \).

pc.alpha.cor
hyperparameter alpha for the PC prior on the autocorrelation parameter in the AR prior.

pc.st.u
hyperparameter U for the PC prior on precisions for the interaction term.

pc.st.alpha
hyperparameter alpha for the PC prior on precisions for the interaction term.

options
list of options to be passed to control.compute() in the inla() function.

control.inla
list of options to be passed to control.inla() in the inla() function. Default to the "adaptive" integration strategy.

verbose
logical indicator to print out detailed inla() intermediate steps.

geo
Deprecated.

rw
Deprecated.

ar
Deprecated.
smoothDirect

Value

List of fitted object

Author(s)

Zehang Richard Li

References

See Also

gdirect

Examples

```r
## Not run:
years <- levels(DemoData[[1]]$time)
# obtain direct estimates
data_multi <- getDirectList(births = DemoData, years = years,
    regionVar = "region", timeVar = "time", clusterVar = "-clustid+id",
    ageVar = "age", weightsVar = "weights", geo.recode = NULL)
data <- aggregateSurvey(data_multi)

# national model
years.all <- c(years, "15-19")
fit1 <- smoothDirect(data = data, Amat = NULL,
    year_label = years.all, year_range = c(1985, 2019),
    rw = 2, is.yearly=FALSE, m = 5)
out1 <- getSmoothed(fit1)
plot(out1, is.subnational=FALSE)

# subnational model
fit2 <- smoothDirect(data = data, Amat = DemoMap$Amat,
    year_label = years.all, year_range = c(1985, 2019),
    rw = 2, is.yearly=TRUE, m = 5, type.st = 4)
out2 <- getSmoothed(fit2)
plot(out2, is.subnational=TRUE)

## End(Not run)
```
smoothSurvey

Fit space-time smoothing models for a generic outcome from complex surveys.

Description

This function calculates the direct estimates by region and fit a simple spatial smoothing model to the direct estimates adjusting for survey design. Normal or binary variables are currently supported. For binary variables, the logit transformation is performed on the direct estimates of probabilities, and a Gaussian additive model is fitted on the logit scale using INLA.

Usage

```r
smoothSurvey(
  data,
  geo = NULL,
  Amat,
  X = NULL,
  responseType = c("binary", "gaussian")[1],
  responseVar,
  strataVar = "strata",
  weightVar = "weights",
  regionVar = "region",
  clusterVar = "~v001+v002",
  pc.u = 1,
  pc.alpha = 0.01,
  pc.u.phi = 0.5,
  pc.alpha.phi = 2/3,
  CI = 0.95,
  formula = NULL,
  timeVar = NULL,
  time.model = c("rw1", "rw2")[1],
  type.st = 1,
  direct.est = NULL,
  direct.est.var = NULL,
  counts.bb = NULL,
  strataVar.bb = NULL,
  clusterVar.bb = NULL,
  totalVar.bb = NULL,
  weight.strata = NULL,
  nsim = 1000,
  ...
)
```

```r
fitGeneric(
  data,
  geo = NULL,
)```
Amat, X = NULL,
responseType = c("binary", "gaussian")[1],
responseVar,
strataVar = "strata",
weightVar = "weights",
regionVar = "region",
clusterVar = "~v001+v002",
pc.u = 1,
pc.alpha = 0.01,
pc.u.phi = 0.5,
pc.alpha.phi = 2/3,
CI = 0.95,
formula = NULL,
timeVar = NULL,
time.model = c("rw1", "rw2")[1],
type.st = 1,
direct.est = NULL,
direct.est.var = NULL,
counts.bb = NULL,
strataVar.bb = NULL,
clusterVar.bb = NULL,
totalVar.bb = NULL,
weight.strata = NULL,
nsim = 1000,
)

Arguments

data data frame with region and strata information.
geo Deprecated argument from early versions.
Amat Adjacency matrix for the regions.
X Covariate matrix with the first column being the region names. Currently only supporting static region-level covariates.
responseType Type of the response variable, currently supports 'binary' (default with logit link function) or 'gaussian'.
responseVar the response variable
strataVar the strata variable
weightVar the weights variable
regionVar Variable name for region, typically 'v024', for older surveys might be 'v101'
clusterVar Variable name for cluster, typically '~v001 + v002'
pc.u hyperparameter U for the PC prior on precisions.
pc.alpha hyperparameter alpha for the PC prior on precisions.
pc.u.phi hyperparameter U for the PC prior on the mixture probability phi in BYM2 model.
pc.alpha.phi: hyperparameter \(\alpha\) for the PC prior on the mixture probability \(\phi\) in BYM2 model.

CI: the desired posterior credible interval to calculate

formula: a string of user-specified random effects model to be used in the INLA call

timeVar: The variable indicating time period. If set to NULL then the temporal model and space-time interaction model are ignored.

time.model: the model for temporal trends and interactions. It can be either "rw1" or "rw2".

type.st: can take values 0 (no interaction), or 1 to 4, corresponding to the type I to IV space-time interaction.

direct.est: data frame of direct estimates, with column names of response and region specified by responseVar, regionVar, and timeVar. When direct.est is specified, it overwrites the data input.

direct.est.var: the column name corresponding to the variance of direct estimates

counts.bb: data frame of counts of binary responses by cluster, with column names of response, region, stratification within region, and cluster ID specified by responseVar, strataVar.bb, and clusterVar.bb. When counts is specified, it overwrites the data input.

strataVar.bb: the variable specifying within region stratification variable. This is only used for the BetaBinomial model.

clusterVar.bb: the variable specifying within cluster ID variable. This is only used for the BetaBinomial model.

totalVar.bb: the variable specifying total observations in counts. This is only used for the BetaBinomial model when counts is specified.

weight.strata: a data frame with one column corresponding to regionVar, and columns specifying proportion of each strata for each region. This argument specifies the weights for strata-specific estimates on the probability scale. This is only used for the BetaBinomial model.

nsim: number of posterior draws to take. This is only used for the BetaBinomial model when weight.strata is provided.

...: additional arguments passed to svydesign function.

Details

The function smoothSurvey replaces the previous function name fitGeneric (before version 1.0.0).

Value

<table>
<thead>
<tr>
<th>HT</th>
<th>Direct estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>Smoothed direct estimates</td>
</tr>
<tr>
<td>fit</td>
<td>a fitted INLA object</td>
</tr>
<tr>
<td>CI</td>
<td>input argument</td>
</tr>
<tr>
<td>Amat</td>
<td>input argument</td>
</tr>
<tr>
<td>responseType</td>
<td>input argument</td>
</tr>
<tr>
<td>formula</td>
<td>INLA formula</td>
</tr>
</tbody>
</table>
Author(s)

Zehang Richard Li

See Also

gDirectList, smoothDirect

Examples

## Not run:
data(DemoData2)
data(DemoMap2)
fit0 <- smoothSurvey(data=DemoData2,
  Amat=DemoMap2$Amat, responseType="binary",
  responseVar="tobacco.use", strataVar="strata",
  weightVar="weights", regionVar="region",
  clusterVar = "~clustid+id", CI = 0.95)

# Example with region-level covariates
Xmat <- aggregate(age~region, data = DemoData2, FUN = mean)
fit1 <- smoothSurvey(data=DemoData2,
  Amat=DemoMap2$Amat, responseType="binary",
  X = Xmat,
  responseVar="tobacco.use", strataVar="strata",
  weightVar="weights", regionVar="region",
  clusterVar = "~clustid+id", CI = 0.95)

# Example with using only direct estimates as input instead of the full data
direct <- fit$HT[, c("region", "HT.est", "HT.var")]
fit2 <- smoothSurvey(data=NULL, direct.est = direct,
  Amat=DemoMap2$Amat, regionVar="region",
  responseVar="HT.est", direct.est.var = "HT.var",
  responseType = "binary")

# Check it is the same as fit0
plot(fit2$smooth$mean, fit0$smooth$mean)

# Example with using only direct estimates as input,
# and after transformation into a Gaussian smoothing model
# Notice: the output are on the same scale as the input
# and in this case, the logit estimates.
direct.logit <- fit$HT[, c("region", "HT.logit.est", "HT.logit.var")]
fit3 <- smoothSurvey(data=NULL, direct.est = direct.logit,
  Amat=DemoMap2$Amat, regionVar="region",
  responseVar="HT.logit.est", direct.est.var = "HT.logit.var",
  responseType = "gaussian")

# Check it is the same as fit0
plot(fit3$smooth$mean, fit0$smooth$logit.mean)

## End(Not run)
**Description**

New Type I to IV space time interaction models for m-year to period random effects

**Usage**

```r
st.new(
 cmd = c("graph", "Q", "mu", "initial", "log.norm.const", "log.prior", "quit"),
 theta = NULL
)
```

**Arguments**

- `cmd` list of model components
- `theta` log precision

---

**Description**

New Type I to IV space time interaction models for m-year to period random effects

**Usage**

```r
st.new.pc(
 cmd = c("graph", "Q", "mu", "initial", "log.norm.const", "log.prior", "quit"),
 theta = NULL
)
```

**Arguments**

- `cmd` list of model components
- `theta` log precision
Description

Discrete-color maps based on the True Classification Probabilities

Usage

tcpPlot(
  draws,
  geo,
  by.geo = NULL,
  year_plot = NULL,
  ncol = 4,
  per1000 = FALSE,
  thresholds = NULL,
  intervals = 3,
  size.title = 0.7,
  legend.label = NULL,
  border = "gray20",
  size = 0.5
)

Arguments

draws a posterior draw object from getSmoothed
geo SpatialPolygonsDataFrame object for the map
by.geo variable name specifying region names in geo
year_plot vector of year string vector to be plotted.
ncol number of columns in the output figure.
per1000 logical indicator to multiply results by 1000.
thresholds a vector of thresholds (on the mortality scale) defining the discrete color scale of the maps.
intervals number of quantile intervals defining the discrete color scale of the maps. Required when thresholds are not specified.
size.title a numerical value giving the amount by which the plot title should be magnified relative to the default.
legend.label Label for the color legend.
border color of the border
size size of the border
Value

A list of True Classification Probability (TCP) tables, a list of individual spplot maps, and a gridded array of all maps.

Author(s)

Tracy Qi Dong, Zehang Richard Li

References


Examples

```r
Not run:
library(dplyr)
data(DemoData)
Create dataset of counts, unstratified
counts.all <- NULL
for(i in 1:length(DemoData)){
 counts <- getCounts(DemoData[[i]][, c("clustid", "time", "age", "died", "region")],
 variables = 'died', by = c("age", "clustid", "region", "time"))
 counts <- counts %>% mutate(cluster = clustid, years = time, Y=died)
 counts$strata <- NA
counts$survey <- names(DemoData)[i]
counts.all <- rbind(counts.all, counts)}

fit cluster-level model on the periods
periods <- levels(DemoData[[1]]$time)
fit <- smoothCluster(data = counts.all,
 Amat = DemoMap$Amat,
 time.model = "rw2",
 st.time.model = "rw1",
 strata.time.effect = TRUE,
 survey.effect = TRUE,
 family = "betabinomial",
 year_label = c(periods, "15-19"))
est <- getSmoothed(fit, nsim = 1000, save.draws=TRUE)
tcp <- tcpPlot(est, DemoMap$geo, by.geo = "REGNAME", interval = 3, year_plot = periods)
tcp$g

End(Not run)
```
Index

* datasets
  BRFSS, 4
  DemoData, 6
  DemoData2, 6
  DemoMap, 7
  DemoMap2, 7
  KenData, 25
  KingCounty, 25
  MalawiData, 26
  MalawiMap, 27

aggregateSurvey, 3

BRFSS, 4

ChangeRegion, 5, 16, 18

DemoData, 6
DemoData2, 6
DemoMap, 7
DemoMap2, 7

expit, 8

fitGeneric (smoothSurvey), 48
fitINLA (smoothDirect), 44
fitINLA2 (smoothCluster), 39

getAdjusted, 8
getAmat, 10
getBirths, 11, 16, 18
getCounts, 13
getDiag, 14
getDirect, 16, 18, 19, 43, 47
getDirectList, 3, 17, 17, 51
getSmoothed, 19, 31, 32, 34, 53
getSmoothedDensity (ridgePlot), 32

hatchPlot, 21

iid.new, 24

iid.new.pc, 24

KenData, 25
KingCounty, 25

logit, 26

MalawiData, 26
MalawiMap, 27
mapPlot, 27
mapPoints, 29

plot.SUMMERproj, 21, 30, 34

ridgePlot, 32, 34
rst, 35
rw.new, 37
rw.new.pc, 38

simhyper, 38
smoothCluster, 20, 33, 39
smoothDirect, 14, 20, 33, 44, 51
smoothSurvey, 48
st.new, 52
st.new.pc, 52
SUMMER (SUMMER-package), 3
SUMMER-package, 3

tcpPlot, 53