Robust Standard Errors in Small Samples

Michal Kolesár

February 23, 2021

Contents

Description 1

Methods 3

Variance estimate 4

Degrees of freedom correction 5

Description

This package implements small-sample degrees of freedom adjustments to robust and cluster-robust
standard errors in linear regression, as discussed in Imbens and Kolesár [2016]. The implementation
can handle models with fixed effects, and cases with a large number of observations or clusters
1.

library(dfadjust)

To give some examples, let us construct an artificial dataset with 11 clusters

```r
set.seed(7)
d1 <- data.frame(y = rnorm(1000), x1 = c(rep(1, 3), rep(0, 997)), x2 = c(rep(1, 150), rep(0, 850)), x3 = rnorm(1000), cl = as.factor(c(rep(1:10, each = 50), rep(11, 500))))
```

Let us first run a regression of `y` on `x1`. This is a case in which, in spite of moderate data size, the
effective number of observations is small since there are only three treated units:

```r
r1 <- lm(y ~ x1, data = d1)
```

No clustering
dfadjustSE(r1)

```r
#> Coefficients:
#> Estimate HC1 se HC2 se Adj. se df p-value
#> (Intercept) 0.00266 0.0311 0.031 0.0311 996.00 0.932
#> x1 0.12940 0.8892 1.088 2.3743 2.01 0.957
```

We can see that the usual robust standard errors (HC1 se) are much smaller than the effective

1We thank Ulrich Müller for suggesting to us the lemma below.
standard errors (Adj. se), which are computed by taking the HC2 standard errors and applying a degrees of freedom adjustment.

Now consider a cluster-robust regression of y on x_2. There are only 3 treated clusters, so the effective number of observations is again small:

```r
r1 <- lm(y ~ x2, data = d1)
# Default Imbens-Kolesár method
dfadjustSE(r1, clustervar = d1$cl)
#>
#> Coefficients:
#> Estimate HC1 se HC2 se Adj. se df p-value
#> (Intercept) -0.0236 0.0135 0.0169 0.0222 4.94 0.288
#> x2 0.1778 0.0530 0.0621 0.1157 2.43 0.124
# Bell-McCaffrey method
dfadjustSE(r1, clustervar = d1$cl, IK = FALSE)
#>
#> Coefficients:
#> Estimate HC1 se HC2 se Adj. se df p-value
#> (Intercept) -0.0236 0.0135 0.0169 0.0316 2.42 0.4547
#> x2 0.1778 0.0530 0.0621 0.1076 2.70 0.0983
```

Now, let us run a regression of y on x_3, with fixed effects. Since we’re only interested in x_3, we specify that we only want inference on the second element:

```r
r1 <- lm(y ~ x3 + cl, data = d1)
dfadjustSE(r1, clustervar = d1$cl, ell = c(0, 1, rep(0, r1$rank - 2)))
#>
#> Coefficients:
#> Estimate HC1 se HC2 se Adj. se df p-value
#> Estimate 0.0261 0.0463 0.0595 0.0928 3.23 0.778
dfadjustSE(r1, clustervar = d1$cl, ell = c(0, 1, rep(0, r1$rank - 2)), IK = FALSE)
#>
#> Coefficients:
#> Estimate HC1 se HC2 se Adj. se df p-value
#> Estimate 0.0261 0.0463 0.0595 0.0928 3.23 0.778
```

Finally, an example in which the clusters are large. We have 500,000 observations:

```r
d2 <- do.call("rbind", replicate(500, d1, simplify = FALSE))
d2$y <- rnorm(length(d2$y))
r2 <- lm(y ~ x2, data = d2)
summary(r2)
#>
#> Call:
#> lm(formula = y ~ x2, data = d2)
#>
#> Residuals:
```
Methods

This section describes the implementation of the Imbens and Kolesár [2016] and Bell and McCaffrey [2002] degrees of freedom adjustments.

There are S clusters, and we observe n_s observations in cluster s, for a total of $n = \sum_{s=1}^{S} n_s$ observations. We handle the case with independent observations by letting each observation be in its own cluster, with $S = n$. Consider the linear regression of a scalar outcome Y_i onto a p-vector of regressors X_i,

$$Y_i = X'_i \beta + u_i, \quad E[u_i \mid X_i] = 0.$$

We’re interested in inference on $\ell' \beta$ for some fixed vector $\ell \in \mathbb{R}^p$. Let $X, u,$ and Y denote the design matrix, and error and outcome vectors, respectively. For any $n \times k$ matrix M, let M_s denote the $n_s \times k$ block corresponding to cluster s, so that, for instance, Y_s corresponds to the outcome vector in cluster s. For a positive semi-definite matrix M, let $M^{1/2}$ be a matrix satisfying $M^{1/2} M^{1/2} = M$, such as its symmetric square root or its Cholesky decomposition.

Assume that

$$E[u_s u'_t \mid X] = \Omega_s, \quad \text{and} \quad E[u_s u'_t \mid X] = 0 \quad \text{if} \ s \neq t.$$

Denote the conditional variance matrix of u by Ω, so that Ω_s is the block of Ω corresponding to cluster s. We estimate $\ell' \beta$ using OLS. In R, the OLS estimator is computed via a QR decomposition,
We estimate \(V \), which allows us to compute the pseudo-inverse if it is singular, as is the case, for example, if the cluster size \(n \) is large. We therefore use the following result, suggested to us by Ulrich Müller, which allows us to compute \(a_s \) by computing a spectral decomposition of a \(p \times p \) matrix.

- Let \(Q'_sQ_s = \sum_{i=1}^{p} \lambda_is r_is' r_is \) be the spectral decomposition of \(Q'_sQ_s \). Then \(A_s = \sum_{i: \lambda_i \neq 1} (1 - \lambda_i)^{-1/2} Q_s r_is' r_is' Q'_s \) satisfies \(A_s(I - Q'_sQ_s)A_s = I \). This follows from the fact that \(I - Q'_sQ_s \) has eigenvalues \(1 - \lambda_is \) and eigenvectors \(Q_s r_is \) and hence its pseudoinverse is \(\sum_{i: \lambda_i \neq 1} (1 - \lambda_i)^{-1/2} Q_s r_is' r_is' \).

Using the lemma, we can compute \(a_s \) efficiently as:

\[
a_s = \sum_{i: \lambda_i \neq 1} (1 - \lambda_i)^{-1/2} Q_s r_is' r_is' Q'_sQ_s \ell = Q_s D_s \ell, \quad D_s = \sum_{i: \lambda_i \neq 1} \lambda_i (1 - \lambda_i)^{-1/2} r_is' r_is'.
\]
Degrees of freedom correction

Let G be an $n \times S$ matrix with columns $(I - QQ')_s a_s$. Then the Bell and McCaffrey [2002] adjustment sets the degrees of freedom to

$$f_{BM} = \frac{\text{tr}(G'G)^2}{\text{tr}((G'G)^2)}.$$

Since $(G'G)_{st} = a_s'(I - QQ')_s (I - QQ')_t a_t = a_s(1\{s = t\} - Q_s Q'_t) a_t$, the matrix $G'G$ can be efficiently computed as

$$G'G = \text{diag}(a'_s a_s) - B B' \quad B_{sk} = a'_s Q_{sk}.$$

Note that B is an $S \times p$ matrix, so that computing the degrees of freedom adjustment only involves $p \times p$ matrices:

$$f_{BM} = \frac{(\sum_s a'_s a_s - \sum_{s,k} B_{sk}^2)^2}{\sum_s (a'_s a_s)^2 - 2 \sum_{s,k} (a'_s a_s) B_{sk}^2 + \sum_{s,t} (B'_s B_t)^2}.$$

If the observations are independent, we compute B directly as $B \leftarrow a*Q$, and since a_i is a scalar, we have

$$f_{BM} = \frac{(\sum_i a_i^2 - \sum_{sk} B_{sk}^2)^2}{\sum_i a_i^4 - 2 \sum_i a_i^2 B'_i B_i + \sum_{i,j} (B'_i B_j)^2}.$$

The Imbens and Kolesár [2016] degrees of freedom adjustment instead sets

$$f_{IK} = \frac{\text{tr}(G'\hat{\Omega}G)^2}{\text{tr}((G'\hat{\Omega}G)^2)},$$

where $\hat{\Omega}$ is an estimate of the Moulton [1986] model of the covariance matrix, under which $\Omega_s = \sigma^2 \epsilon I_{n_s} + \rho \epsilon_{1_{n_s}} \epsilon_{1_{n_s}}'$. Using simple algebra, one can show that in this case,

$$G'\hat{\Omega}G = \sigma^2 \epsilon \text{diag}(a'_s a_s) - \sigma^2 \epsilon B B' + \rho (D - BF')(D - BF')',$$

where

$$F_{sk} = \epsilon_{1_{n_s}} Q_{sk}, \quad D = \text{diag}(a'_s \epsilon_{1_{n_s}})$$

which can again be computed even if the clusters are large. The estimate $\hat{\Omega}$ replaces σ^2 and ρ with analog estimates.

References

