Package ‘isoband’

June 20, 2020

Title Generate Isolines and Isobands from Regularly Spaced Elevation Grids

Version 0.2.2

Description A fast C++ implementation to generate contour lines (isolines) and contour polygons (isobands) from regularly spaced grids containing elevation data.

URL https://github.com/wilkelab/isoband

BugReports https://github.com/wilkelab/isoband/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData true

LinkingTo testthat

Imports grid, utils

RoxygenNote 7.1.0

Suggests covr, ggplot2, knitr, magick, microbenchmark, rmarkdown, sf, testthat

SystemRequirements C++11

VignetteBuilder knitr

NeedsCompilation yes

Author Claus O. Wilke [aut, cre] (<https://orcid.org/0000-0002-7470-9261>), Thomas Lin Pedersen [aut] (<https://orcid.org/0000-0002-5147-4711>)

Maintainer Claus O. Wilke <wilke@austin.utexas.edu>

Repository CRAN

Date/Publication 2020-06-20 18:20:03 UTC

R topics documented:

isoband-package .. 2
angle_halfcircle_bottom .. 2
clip_lines ... 3
isoband-package

isoband: Generate Isolines and Isobands from Regularly Spaced Elevation Grids

Description

A fast C++ implementation to generate contour lines (isolines) and contour polygons (isobands) from regularly spaced grids containing elevation data.

Author(s)

Maintainer: Claus O. Wilke <wilke@austin.utexas.edu> (ORCID)
Authors:
 • Thomas Lin Pedersen <thomasp85@gmail.com> (ORCID)

See Also

Useful links:
 • https://github.com/wilkelab/isoband
 • Report bugs at https://github.com/wilkelab/isoband/issues

angle_halfcircle_bottom

Standardize label angles

Description

Function factories that return functions to standardize rotation angles to specific angle ranges.

Usage

angle_halfcircle_bottom()

angle_halfcircle_right()

angle_fixed(theta = 0)

angle_identity()
Arguments

theta Fixed angle, in radians.

Details

angle_halfcircle_bottom() standardizes angles to (-pi/2, pi/2).
angle_halfcircle_right() standardizes angles to (0, pi).
angle_fixed() sets all angles to a fixed value (0 by default).
angle_identity() does not modify any angles.

clip_lines
Clip lines so they don’t run into a set of boxes.

Description

Clip lines so they don’t run into a set of boxes. Useful for labeling isolines, as it allows removal of line segments that would run into any text labels.

Usage

clip_lines(x, y, id, clip_boxes, asp = 1)

Arguments

x Numeric vector of x coordinates
y Numeric vector of y coordinates
id Integer vector of id numbers indicating which lines are connected
clip_boxes Data frame specifying the locations of boxes to clip to. Should have five columns, named x, y, width, height, theta, which specify the x and y positions of each box midpoint, as well as the box width, box height, and box angle in radians. Each box is specified by one data row.
asp Aspect ratio (width/height) of the target canvas. This is used to convert widths to heights and vice versa for rotated boxes
Description
Efficient calculation of isolines and isobands from elevation grid

Usage

isobands(x, y, z, levels_low, levels_high)
isolines(x, y, z, levels)

Arguments

x Numeric vector specifying the x locations of the grid points.
y Numeric vector specifying the y locations of the grid points.
z Numeric matrix specifying the elevation values for each grid point.
levels_low, levels_high
Numeric vectors of minimum/maximum z values for which isobands should be generated. Any z values that are exactly equal to a value in levels_low are considered part of the corresponding isoband, but any z values that are exactly equal to a value in levels_high are not considered part of the corresponding isoband. In other words, the intervals specifying isobands are closed at their lower boundary and open at their upper boundary.

levels Numeric vector of z values for which isolines should be generated.

See Also
plot_iso

Examples

library(grid)

#' # one simple connected shape
m <- matrix(c(0, 0, 0, 0, 0, 0,
 0, 0, 1, 1, 0, 0,
 0, 1, 1, 1, 0, 0,
 0, 0, 1, 1, 0, 0,
 0, 0, 0, 1, 0, 0,
 0, 0, 0, 0, 0, 0), 6, 6, byrow = TRUE)
df_bands <- isobands((1:ncol(m))/(ncol(m)+1), (nrow(m):1)/(nrow(m)+1), m, 0.5, 1.5)[[1]]
df_lines <- isolines((1:ncol(m))/(ncol(m)+1), (nrow(m):1)/(nrow(m)+1), m, 0.5)[[1]]
g <- expand.grid(x = (1:ncol(m))/(ncol(m)+1), y = (nrow(m):1)/(nrow(m)+1))
grid.newpage()
isobands_grob

Render isobands

Description
This function generates a grid grob that represents isobands.

Usage

isobands_grob(bands, gp = gpar(), units = "npc")

Arguments

- **bands**: Isobands, as produced by the `isobands()` function.
- **gp**: Grid graphical parameters. Parameters are recycled among the total number of bands drawn.
- **units**: A character string specifying the units in which to interpret the isobands coordinates. Defaults to "npc".
See Also

See `isolines_grob()` for drawing of isolines.

Examples

```r
library(grid)

viridis_pal <- colorRampPalette(
  c("#440154", "#414487", "#2A788E", "#22A884", "#7AD151", "#FDE725"),
  space = "Lab"
)

x <- (1:ncol(volcano))/(ncol(volcano)+1)
y <- (nrow(volcano):1)/(nrow(volcano)+1)
bands <- isobands(x, y, volcano, 5*(18:38), 5*(19:39))

b <- isobands_grob(
  bands,
  gp = gpar(col = "black", fill = viridis_pal(21), alpha = 0.5)
)

grid.newpage()
grid.draw(b)
```

Description

This function generates a grid grob that represents labeled isolines.

Usage

```r
isolines_grob(
  lines,
  gp = gpar(),
  breaks = NULL,
  labels = NULL,
  margin = unit(c(1, 1, 1, 1), "pt"),
  label_col = NULL,
  label_alpha = NULL,
  label_placer = label_placer_minmax(),
  units = "npc"
)
```
Arguments

- **lines**: Isolines, as produced by the `isolines()` function.
- **gp**: Grid graphical parameters. Parameters applying to lines (such as `col`, `lwd`, `lty`, etc.) are recycled among the total number of lines drawn. Parameters applying only to labels (such as `fontfamily`, `fontsize`) are recycled among the specified breaks only. The two parameters `col` and `alpha` are also applied to labels, unless overridden (see `label_col` and `label_alpha`), but are matched to the corresponding lines.
- **breaks**: Character vector specifying the isolines that should be labeled. If NULL, labels all isolines.
- **labels**: Character vector specifying the labels for each break. If NULL, uses the breaks as labels. The number of labels provided must match the number of breaks provided.
- **margin**: Unit object of length 4 specifying the top, right, bottom, and left margins around each text label. The same margins are applied to all labels.
- **label_col**: Color applied to labels. Can be used to override the color provided in `gp`, in case labels and lines should have different colors.
- **label_alpha**: Alpha applied to labels. Can be used to override the alpha value provided in `gp`, in case labels and lines should have different alpha values.
- **label_placer**: Function that controls how labels are placed along the isolines. Uses `label_placer_minmax()` by default.
- **units**: A character string specifying the units in which to interpret the isolines coordinates. Defaults to "npc".

See Also

See `isobands_grob()` for drawing of isobands. See `label_placer_minmax()` for label placement strategies.

Examples

```r
library(grid)

temp <- expand.grid(x = 1:50, y = 1:50)
volcano <- with(temp, z <- 20 * (sin(x/10) + sin(y/10)) + 100)

viridis_pal <- colorRampPalette(c("#440154", "#414487", "#2A788E", "#22A884", "#7AD151", "#FDE725"), space = "Lab")

x <- (1:ncol(volcano))/(ncol(volcano)+1)
y <- (nrow(volcano):1)/(nrow(volcano)+1)
lines <- isolines(x, y, volcano, 5*(19:38))
bands <- isobands(x, y, volcano, 5*(19:38), 5*(19:39))

b <- isobands_grob(bands,
  gp = gpar(col = NA, fill = viridis_pal(21), alpha = 0.4))
```
iso_to_sfg

Convert isolines or isobands to sfg object

Description

Convert isolines or isobands to an sf geometry collection (sfg) object. Further downstream processing needs to happen via the sf package.

Usage

iso_to_sfg(x)

Arguments

x

The object to convert.

Details

The function iso_to_sfg() is a generic that takes an object created by either isolines() or isobands() and turns it into a simple features (sf) geometry collection. Importantly, the isobanding algorithm can produce polygons that do not represent valid simple features. This happens usually when the lower limit of an isoband is exactly equal to some data values (see examples for a demonstration). This can be worked around either by slightly shifting the data or band limits (e.g., round all data values and then shift them by a value smaller than the rounding error) or by fixing the geometries using the function st_make_valid().

Examples

library(sf)
library(ggplot2)

Example 1: simple 5x5 matrix
m <- matrix(c(0, 2, 2, 2, 0,
 0, 1, 0, 1, 0,
 0, 1, 0, 0, 0,
 0, 1, 0, 1, 0,
 0, 0, 0, 0, 0), 5, 5, byrow = TRUE)
Set up a label placement strategy
Description

These functions set up various label placement strategies.

Usage

```r
label_placer_minmax(
  placement = "tb",
  rot_adjuster = angle_halfcircle_bottom(),
  n = 2
)
```

```r
label_placer_none()
```

```r
label_placer_manual(breaks, x, y, theta)
```

Arguments

- **placement**: String consisting of any combination of the letters "t", "r", "b", "l" indicating the placement of labels at the top, to the right, at the bottom, to the left of the isoline.
- **rot_adjuster**: Function that standardizes the rotation angles of the labels. See e.g. `angle_halfcircle_bottom()`.
- **n**: Size of the point neighborhood over which the rotation angle should be calculated.
- **breaks**: Character vector specifying the isolines to be labeled, as in `isolines_grob()`.
- **x, y, theta**: Numeric vectors specifying the x and y positions and angles (in radians) for each label corresponding to each break.

Details

- `label_placer_minmax()` places labels at the horizontal or vertical minima or maxima of the respective isolines.
- `label_placer_none()` places no labels at all.
- `label_placer_manual()` places labels at manually defined locations.

plot_iso

Visualize a single isoband

Description

This function visualizes a single isoband calculated from a matrix. It is mainly useful for debugging and visualizing the isobanding algorithm. See `isobands()` for more examples.
Usage

plot_iso(
 m,
 vlo,
 vhi,
 fill_lo = "gray95",
 fill_mid = "gray50",
 fill_hi = "black",
 fill_band = "cornsilk",
 col_lo = "black",
 col_hi = "black",
 newpage = TRUE
)

Arguments

m input matrix
vlo lower cutoff for isobanding
vhi higher cutoff for isobanding
fill_lo fill color for points below the lower cutoff
fill_mid fill color for points between the two cutoffs
fill_hi fill color for points above the higher cutoff
fill_band fill color for the isoband
col_lo line color for lower cutoff
col_hi line color for higher cutoff
newpage boolean, indicating whether grid.newpage() should be called or not

Examples

m <- matrix(c(0, 0, 0, 0, 0, 0,
 0, 2, 2, 2, 2, 0,
 0, 2, 0, 0, 2, 0,
 0, 2, 0, 0, 2, 0,
 0, 2, 2, 2, 2, 0,
 0, 0, 0, 0, 0), 6, 6, byrow = TRUE)

plot_iso(m, 0.5, 1.5)
Index

angle_fixed (angle_halfcircle_bottom), 2
angle_halfcircle_bottom, 2
angle_halfcircle_bottom(), 10
angle_halfcircle_right
 (angle_halfcircle_bottom), 2
angle_identity
 (angle_halfcircle_bottom), 2

clip_lines, 3

iso_to_sfg, 8
isoband (isoband-package), 2
isoband-package, 2
isobands, 4
isobands(), 5, 8, 10
isobands_grob, 5
isobands_grob(), 7
isolines (isobands), 4
isolines(), 7, 8
isolines_grob, 6
isolines_grob(), 6, 10

label_placer_manual
 (label_placer_minmax), 9
label_placer_minmax, 9
label_placer_minmax(), 7
label_placer_none
 (label_placer_minmax), 9

plot_iso, 4, 10